⑶如圖④.若將正方形變?yōu)槿我馑倪呅?其他條件任然不變.請你猜想四邊形的面積并說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

如圖(1)(2),直線y=-x+4與兩坐標(biāo)軸分別相交于A、B點(diǎn),點(diǎn)M是線段AB上任意一點(diǎn)(A、B兩點(diǎn)除外),過M分別作MC⊥OA于點(diǎn)C,MD⊥OB于D.
(1)若點(diǎn)M的橫坐標(biāo)是a,則點(diǎn)M的縱坐標(biāo)是
-a+4
-a+4
(用含a的代數(shù)式表示)
(2)當(dāng)點(diǎn)M在AB上運(yùn)動時(shí),你認(rèn)為四邊形OCMD的周長是否發(fā)生變化?并說明理由;
(3)當(dāng)點(diǎn)M運(yùn)動到什么位置時(shí),四邊形OCMD的面積有最大值?最大值是多少?
(4)當(dāng)四邊形OCMD為正方形時(shí),將四邊形OCMD沿著x軸的正方向移動,設(shè)平移的距離為b(0<b<4),正方形O′CMD與△AOB重疊部分的面積為S.試求S與b的函數(shù)關(guān)系式并畫出該函數(shù)的圖象.

查看答案和解析>>

24、(1)如圖,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC邊上一點(diǎn),且∠FAE=∠EAD,求證:EF⊥AE.
(2)若將(1)中的“正方形”改為“矩形”、“菱形”和“任意平行四邊形”,其它條件不變,則是否仍有“EF⊥AE”的結(jié)論.若結(jié)論都成立,選取一種畫出圖形,并簡單說明理由,若不成立,也請畫圖說明理由.

查看答案和解析>>

(1)如圖,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC邊上一點(diǎn),且∠FAE=∠EAD,求證:EF⊥AE.
(2)若將(1)中的“正方形”改為“矩形”、“菱形”和“任意平行四邊形”,其它條件不變,則是否仍有“EF⊥AE”的結(jié)論.若結(jié)論都成立,選取一種畫出圖形,并簡單說明理由,若不成立,也請畫圖說明理由.

查看答案和解析>>

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實(shí)數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab

又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,當(dāng)且僅當(dāng)a、b滿足
 
時(shí),a+b有最小值2
p

(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗(yàn)證a+b≥2
ab
成立,并指出等號成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案