6.C 解析:由圖像可看出線段AB是一次函數(shù)圖像的一段.且經(jīng)過兩點(diǎn).x的取值范圍為0≤x≤3. 設(shè)函數(shù)表達(dá)式為y=kx+b. 將 分別代入. 得 解得 ∴關(guān)系式為y=-x+2. 查看更多

 

題目列表(包括答案和解析)

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AD的對稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方精英家教網(wǎng)向作勻速運(yùn)動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時,過點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

(2012•昌平區(qū)二模)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點(diǎn)A、C分別在y軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B和D(4,
2
3
).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找到點(diǎn)M,使得M到D、B的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)如果點(diǎn)P由點(diǎn)A出發(fā)沿線段AB以2cm/s的速度向點(diǎn)B運(yùn)動,同時點(diǎn)Q由點(diǎn)B出發(fā)沿線段BC以1cm/s的速度向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.設(shè)S=PQ2(cm2).
①求出S與運(yùn)動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S=
5
4
時,在拋物線上存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)R的坐標(biāo).

查看答案和解析>>

如圖,在直角坐標(biāo)系中,是△ABC是等腰直角三角形,AB=AC=,O為斜邊BC的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AO的對稱點(diǎn);點(diǎn)Q由點(diǎn)O出發(fā)沿射線OC方向作勻速運(yùn)動,且滿足四邊形QOPP′是平行四邊形,設(shè)平行四邊形QOPP′的面積為y,OQ=x。
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時,過點(diǎn)P、A、P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E,使EPP′的面積為20,若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由。

查看答案和解析>>

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AD的對稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向作勻速運(yùn)動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時,過點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8數(shù)學(xué)公式,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AD的對稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向作勻速運(yùn)動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時,過點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案