(2013•石景山區(qū)二模)已知集合S
n={(x
1,x
2,…,x
n)|x
1,x
2,…,x
n是正整數(shù)1,2,3,…,n的一個排列}(n≥2),函數(shù)
g(x)=對于(a
1,a
2,…a
n)∈S
n,定義:b
i=g(a
i-a
1)+g(a
i-a
2)+…+g(a
i-a
i-1),i∈{2,3,…,n},b
1=0,稱b
i為a
i的滿意指數(shù).排列b
1,b
2,…,b
n為排列a
1,a
2,…,a
n的生成列;排列a
1,a
2,…,a
n為排列b
1,b
2,…,b
n的母列.
(Ⅰ)當n=6時,寫出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)證明:若a
1,a
2,…,a
n和a′
1,a′
2,…,a′
n為S
n中兩個不同排列,則它們的生成列也不同;
(Ⅲ)對于S
n中的排列a
1,a
2,…,a
n,定義變換τ:將排列a
1,a
2,…,a
n從左至右第一個滿意指數(shù)為負數(shù)的項調(diào)至首項,其它各項順序不變,得到一個新的排列.證明:一定可以經(jīng)過有限次變換τ將排列a
1,a
2,…,a
n變換為各項滿意指數(shù)均為非負數(shù)的排列.