題目列表(包括答案和解析)
求曲線y=x2+1在點P(1,2)處的切線的斜率k.
探究:用導(dǎo)數(shù)的方法求P點的切線的斜率:在P點附近作另一個點Q,先表示出割線PQ的斜率,讓后將Q點無限接近于P點,即當(dāng)Δx趨向于0時,割線PQ的斜率為過P點的切線的斜率.
已知函數(shù),曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
【解析】(1)根據(jù)可建立關(guān)于a,b,c的三個方程,解方程組即可.
(2)在(1)的基礎(chǔ)上,利用導(dǎo)數(shù)列表求極值,最值即可.
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當(dāng)時,求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當(dāng)時,求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當(dāng)時,求直線OM斜率的最
小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com