(四)用函數(shù)方法解題 8.已知數(shù)列{an},那么“對任意的nN+,點(diǎn)Pn(n ,an)都在直線y=x+1上 是“{an}為等差數(shù)列 的( B) A必要條件 B 充分條件 C 充要條件 D 既不充分也不必要條件 9.已知等差數(shù)列{an}滿足3a4=7a7,且a1>0,Sn是{an}的前n項(xiàng)和.Sn取得最大值.則n= 9 . 10.已知數(shù)列{an}中an=2n-7,(nN+),++--+= 153 查看更多

 

題目列表(包括答案和解析)

已知3臺(tái)機(jī)器位于直線l上,機(jī)器所在的位置如下圖所示,其中 M1 M2 =10m, M2 M3 =20m;現(xiàn)要放置一臺(tái)檢驗(yàn)臺(tái)P,用函數(shù)方法確定放在哪里可使檢驗(yàn)臺(tái)P到3臺(tái)機(jī)器的距離和最?

X

 
                                               

                                                           

查看答案和解析>>

3、若一系列函數(shù)的解析式和值域相同,但定義域不相同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同族函數(shù)”.下面四個(gè)函數(shù)中能夠被用來構(gòu)造“同族函數(shù)”的是( 。

查看答案和解析>>

(2006•石景山區(qū)一模)已知函數(shù)y=f(x)對于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列,方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
(。┤绻梢杂蒙鲜龇椒(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;
(ⅱ)是否存在一個(gè)實(shí)數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由;
(ⅲ)當(dāng)a=1時(shí),若x1=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

已知函數(shù)f(x)=
x+1-aa-x
,a∈R
.利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對于定義域中給定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn}.
(1)求實(shí)數(shù)a的值;
(2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
(3)設(shè)Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),試問:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,試確定n及相應(yīng)的x1的值;若不存在,請說明理由?

查看答案和解析>>

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個(gè)判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號
①③
①③

查看答案和解析>>


同步練習(xí)冊答案