故這樣的直線存在.其方程為y=x或y=x.評述:本題考查了復(fù)數(shù)的有關(guān)概念.參數(shù)方程與普通方程的互化.變換與化歸的思想方法.分類討論的思想方法及待定系數(shù)法等. 查看更多

 

題目列表(包括答案和解析)

過兩點A(-2,4),B(-1,3)的直線斜截式方程為
y=-x+2
y=-x+2

查看答案和解析>>

已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

所以

所以

,

因為,即,

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

(2010•寶山區(qū)模擬)雙曲線C:
x2
a2
-
y2
b2
=1
上一點(2,
3
)
到左,右兩焦點距離的差為2.
(1)求雙曲線的方程;
(2)設(shè)F1,F(xiàn)2是雙曲線的左右焦點,P是雙曲線上的點,若|PF1|+|PF2|=6,求△PF1F2的面積;
(3)過(-2,0)作直線l交雙曲線C于A,B兩點,若
OP
=
OA
+
OB
,是否存在這樣的直線l,使OAPB為矩形?若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

(2012•安慶二模)已知直線l:x+y+8=0,圓O:x2+y2=36(O為坐標原點),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,直線l被圓O截得的弦長與橢圓的長軸長相等.
(I)求橢圓C的方程;
(II)過點(3,0)作直線l,與橢圓C交于A,B兩點設(shè)
OS
=
OA
+
OB
(O是坐標原點),是否存在這樣的直線l,使四邊形為ASB的對角線長相等?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

(2009•寶山區(qū)一模)已知點F1,F(xiàn)2是雙曲線M:
x2
a2
-
y2
b2
=1
的左右焦點,其漸近線為y=±
3
x
,且右頂點到左焦點的距離為3.
(1)求雙曲線M的方程;
(2)過F2的直線l與M相交于A、B兩點,直線l的法向量為
n
=(k,-1),(k>0)
,且
OA
OB
=0
,求k的值;
(3)在(2)的條件下,若雙曲線M在第四象限的部分存在一點C滿足
OA
+
OB
=m
F2C
,求m的值及△ABC的面積S△ABC

查看答案和解析>>


同步練習(xí)冊答案