所以直線l方程為y=x. 查看更多

 

題目列表(包括答案和解析)

  已知拋物線的焦點為F,準線為l,是否存在雙曲線C,同時滿足以下兩個條件:

  (Ⅰ)雙曲線C的一個焦點為F,相應于F的準線為l;

  (Ⅱ)雙曲線C截與直線x-y=0垂直的直線所得線段AB的長為2,并且線段AB的中點恰好在直線x-y=0上.

若存在,求出該雙曲線C的方程;若不存在,說明理由.

查看答案和解析>>

22.已知復數(shù)z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中x,y,x′,y′均為實數(shù).i為虛數(shù)單位,且對于任意復數(shù)z,有w=·,.

(1)試求m的值,并分別寫出x′和y′用x、y表示的關系式;

(2)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.

當點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程.

(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在c 該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.

查看答案和解析>>

以橢圓=1的焦點為焦點,過直線l:x-y+9=0上一點M作橢圓,要使所作橢圓的長軸最短,點M應在何處?并求出此時的橢圓方程.

查看答案和解析>>

如圖所示,已知兩點P(-2,2)、Q(0,2)以及一直線l:y=x,設長為的線段AB在直線l上移動.求直線PA和QB的交點M的軌跡方程.

查看答案和解析>>

以坐標原點為頂點,x軸為對稱軸的拋物線C與直線x-y+k=0相交于點P(1,3)求:

(1)拋物線C的方程;

(2)以直線l被拋物線C所截得的弦為直徑的圓的方程.

查看答案和解析>>


同步練習冊答案