同理B′[] 查看更多

 

題目列表(包括答案和解析)

(理)已知曲線C:f(x)=x2,C上點A、An的橫坐標分別為1和an(n∈N*),且a1=5,xn+1=af(xn-1)+1(a>0,a≠,a≠1).記區(qū)間Dn=[1,an](an>1).當x∈Dn時,曲線C上存在點Pn(xn,f(xn)),使得點Pn處的切線與直線AAn平行.

(1)試判斷:數(shù)列{loga(xn-1)+1}是什么數(shù)列;

(2)當DnDn+1對一切n∈N*恒成立時,求實數(shù)a的取值范圍;

(3)記數(shù)列{an}的前n項和為Sn,當a=時,試比較Sn與n+7的大小,并說明你的結論.

(文)已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點.若點B的坐標為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調性,在[0,2]和[4,5]上有相反的單調性.

(1)求c的值.

(2)在函數(shù)f(x)的圖象上是否存在一點M(x0,y0),使得f(x)在點M處的切線斜率為3b?若存在,求出點M的坐標;若不存在,請說明理由.

(3)求|AC|的取值范圍.

查看答案和解析>>

(理)設直線l:y=k(x+1)與橢圓x2+3y2=a2(a>0)相交于A、B兩個不同的點,與x軸相交于點C,記O為坐標原點.

(1)證明a2;

(2)若AC=2CB,求△OAB的面積取得最大值時的橢圓方程.

(文)設a∈R,函數(shù)f(x)=x3-x2-x+a.

(1)求f(x)的單調區(qū)間;

(2)當x∈[0,2]時,若|f(x)|≤2恒成立,求a的取值范圍.

查看答案和解析>>

(理)已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點.若點B的坐標為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調性,在[0,2]和[4,5]上有相反的單調性.

(1)求c的值.

(2)在函數(shù)f(x)的圖象上是否存在一點M(x0,y0),使得f(x)在點M處的切線斜率為3b?若存在,求出點M的坐標;若不存在,請說明理由.

(3)求|AC|的取值范圍.

(文)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]單調遞增,在區(qū)間[1,2)單調遞減.

(1)求a的值;

(2)若點A(x0,f(x0))在函數(shù)f(x)的圖象上,求證點A關于直線x=1的對稱點B也在函數(shù)f(x)的圖象上;

(3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有3個交點,若存在,請求出實數(shù)b的值;若不存在,試說明理由.

查看答案和解析>>

定義在[-1,1]上的奇函數(shù)滿足,且當,時,有

(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出AB兩點的坐標;若不存在,請說明理由并加以證明.

(2)若對所有恒成立,

求實數(shù)m的取值范圍.

 

查看答案和解析>>

定義在[-1,1]上的奇函數(shù)滿足,且當,時,有
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有恒成立,
求實數(shù)m的取值范圍.

查看答案和解析>>


同步練習冊答案