綜上.當(dāng)u>mn時.的取值范圍為(2-.1)∪.評述:本題主要考查橢圓的對稱性及不等式的應(yīng)用.通過求最小值來考查邏輯思維能力和應(yīng)用能力.同時體現(xiàn)分類討論思想. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖像關(guān)于點(diǎn)(1,0)對稱,若對任的x,y∈R,不等式f(-6x+21)+f(-8y)<0恒成立,則當(dāng)x>3時,的取值范圍是(   )    

A  (3,7)    B (9,25)    C (13,49)    D (9,49)

 

查看答案和解析>>

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,x,y滿足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O為坐標(biāo)原點(diǎn),則當(dāng)1≤x≤4時,的取值范圍為( )
A.[12,+∞]
B.[0,3]
C.[3,12]
D.[0,12]

查看答案和解析>>


同步練習(xí)冊答案