解:由題設知點Q不在原點.設P.R.Q的坐標分別為(xP.yP).(xR.yR).(x.y).其中x.y不同時為零.設OP與x軸正方向的夾角為α.則有xP=|OP|cosα.yP=|OP|sinαxR=|OR|cosα.yR=|OR|sinαx=|OQ|cosα.y=|OQ|sinα由上式及題設|OQ|?|OP|=|OR|2.得 ④③②①由點P在直線L上.點R在橢圓上.得方程組 ⑥⑤ 查看更多

 

題目列表(包括答案和解析)

(2012•武漢模擬)如圖,已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足
PM
MF2
=0,|
MF2
|≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>

如圖,已知橢圓Γ:+=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足=0,||≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案