題目列表(包括答案和解析)
對(duì)于解方程x2-2x-3=0的下列步驟:
①設(shè)f(x)=x2-2x-3
②計(jì)算方程的判別式Δ=22+4×3=16>0
③作f(x)的圖象
④將a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作為解方程的算法的有效步驟為( )
A.①② B.②③
C.②④ D.③④
已知,設(shè)和是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實(shí)數(shù)m的取值范圍是(4,8]
下列變量之間的關(guān)系是函數(shù)關(guān)系的是( )
A.已知二次函數(shù)y=ax2+bx+c,其中a、c是已知常數(shù),取b為自變量,因變量是這個(gè)函數(shù)的判別式Δ=b2-4ac
B.光照時(shí)間和果樹畝產(chǎn)量
C.降雪量和交通事故發(fā)生率
D.父母的身高和子女的身高
A.已知二次函數(shù)y=ax2+bx+c,其中a,c是常數(shù),取b為自變量,因變量是這個(gè)函數(shù)的判別式Δ=b2-4ac
B.光照時(shí)間和果樹產(chǎn)量
C.降雪量與交通事故發(fā)生率
D.每畝施肥量與糧食畝產(chǎn)量
A.已知二次函數(shù)y=ax2+bx+c,其中a,c是常數(shù),取b為自變量,因變量是這個(gè)函數(shù)的判別式Δ=b2-4ac
B.光照時(shí)間和果樹產(chǎn)量
C.降雪量與交通事故發(fā)生率
D.每畝施肥量與糧食畝產(chǎn)量
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com