整理得(k12-1)x2+2k12x+2k12-1=0 ②若k12-1=0.則方程組①只有一個解.即l1與雙曲線只有一個交點與題設(shè)矛盾.故k12-1≠0即k12≠1 查看更多

 

題目列表(包括答案和解析)

11.已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例,推廣的命題為:______________.

查看答案和解析>>

11.已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例,推廣的命題為:                                      .

查看答案和解析>>

有下列命題中假命題的序號是
①④
①④

①x=0是函數(shù)y=x3的極值點;
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(-4,4)上單調(diào)遞減.
④若雙曲線的漸近線方程為y=±
3
x
,則其離心率為2.

查看答案和解析>>

計算下列定積分.
(1)
3
-1
(4x-x2)dx
;(2)
π
2
-
π
2
cos2xdx

查看答案和解析>>

定義:F(x,y)=yx(x>0,y>0)
(1)解關(guān)于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)記f(x)=3•F(1,x),設(shè)Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
對n∈N*恒成立,求實數(shù)a的取值范圍;
(3)記g(x)=F(x,2),正項數(shù)列an滿足:a1=3,g(an+1)=8an,求數(shù)列an的通項公式,并求所有可能的乘積ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>


同步練習(xí)冊答案