由(2).知f(m)==(m+2)+-4.當(dāng)m∈[-1.0)時(shí).任取m1.m2.0>m1>m2≥-1.則 查看更多

 

題目列表(包括答案和解析)

.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。

   (1)求f(1), f()的值;

   (2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;

   (3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;

   (4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a­n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案