解法一:如圖8―24建立坐標(biāo)系.以l1為x軸.MN的垂直平分線為y軸.點(d閳ワ腹鈧拷查看更多

 

題目列表(包括答案和解析)

如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個(gè)銳角,它們的終邊分別與單位圓交于兩點(diǎn).已知兩點(diǎn)的縱坐標(biāo)分別為.

 (1)求的值;

(2)求角的大小.

 

 

 

查看答案和解析>>

如圖8-24,在一個(gè)倒置的正三棱錐容器內(nèi),放入一個(gè)鋼球,鋼球恰好與棱錐的四個(gè)面都接觸上,經(jīng)過(guò)棱錐的一條側(cè)棱和高作截面,正確的截面圖形是(    )

 

 

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖所示,EFGH是以O(shè)為圓心,半徑為1的圓的內(nèi)接正方形,將一粒豆子隨機(jī)地扔到該圓內(nèi),用A表示事件“豆子落在正方形EFGH內(nèi)”,B表示事件“豆子落在扇形OHE(陰影部分)內(nèi)”,則P(B|A)=
1
4
1
4

查看答案和解析>>

(08年周至二中一模理) (12分) 如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線x軸于點(diǎn)C, ,動(dòng)點(diǎn)到直線的距離是它到點(diǎn)D的距離的2倍 

(I)求點(diǎn)的軌跡方程;

(II)設(shè)點(diǎn)K為點(diǎn)的軌跡與x軸正半軸的交點(diǎn),直線交點(diǎn)的軌跡于兩點(diǎn)(與點(diǎn)K均不重合),且滿足  求直線EF在X軸上的截距;

(Ⅲ)在(II)的條件下,動(dòng)點(diǎn)滿足,求直線的斜率的取值范圍 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案
閸忥拷 闂傦拷