因為A.B是原點以外的兩點.所以x≠0.所以點M的軌跡是以(2p.0)為圓心.以2p為半徑的圓.去掉坐標原點.評述:本小題主要考查直線.拋物線的基礎(chǔ)知識.考查由動點求軌跡方程的基本方法以及方程化簡的基本技能. 查看更多

 

題目列表(包括答案和解析)

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC頂點C的軌跡方程;

(Ⅱ)設(shè)頂點C的軌跡為D,已知直線過點(0,1)并且與曲線D交于P、N兩點,若O為坐標原點,滿足OP⊥ON,求直線的方程.

【解析】

第一問因為設(shè)C(x,y)(

……3分

∵M是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形頂點C的軌跡方程為.…6分

第二問直線l的方程為y=kx+1

y。 ∵直線l與曲線D交于P、N兩點,∴△=,

,∴

得到直線方程。

 

查看答案和解析>>


同步練習冊答案