證法一:依題設(shè)得橢圓的半焦距c=1.右焦點為F(1.0).右準線方程為x=2.點E的坐標為(2.0).EF的中點為N(.0).若AB垂直于x軸.則A(1.y1).B(1.-y1).C(2.-y1). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)對(1)中的橢圓C,直線y=x+1與C交于P、Q兩點,求|PQ|的值;
(3)設(shè)B為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的短軸的一個端點,F(xiàn)為橢圓C的一個焦點,O為坐標原點,記∠BFO=θ.當橢圓C同時滿足下列兩個條件:①
π
6
≤θ≤
π
4
;②a2+b2=2a2b2.求橢圓長軸的取值范圍.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)設(shè)(1)中的橢圓C與直線y=kx+1相交于P、Q兩點,求
OP
OQ
的取值范圍.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)設(shè)(1)中的橢圓C與直線y=kx+1相交于P、Q兩點,求
OP
OQ
的取值范圍;
(3)設(shè)A為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸的一個端點,B為橢圓短軸的一個端點,F(xiàn)為橢圓C的一個焦點,O為坐標原點,記∠BFO=θ.當橢圓C同 時滿足下列兩個條件:①
π
6
≤θ≤
π
4
;②O到直線AB的距離為
2
2
,求橢圓長軸長的取值范圍

查看答案和解析>>

已知橢圓C:(a>b>0).
(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)對(1)中的橢圓C,直線y=x+1與C交于P、Q兩點,求|PQ|的值;
(3)設(shè)B為橢圓C:(a>b>0)的短軸的一個端點,F(xiàn)為橢圓C的一個焦點,O為坐標原點,記∠BFO=θ.當橢圓C同時滿足下列兩個條件:①;②a2+b2=2a2b2.求橢圓長軸的取值范圍.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)與直線x+y-1=0相交于A,B兩點.
(1)當橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列時,求橢圓的方程;
(2)在(1)的條件下,求弦AB的長度;
(3)當橢圓的離心率e滿足
3
3
≤e≤
2
2
,且以AB為直徑的圓經(jīng)過坐標原點O,求橢圓長軸長的取值范圍.

查看答案和解析>>


同步練習冊答案