因?yàn)闄E圓右準(zhǔn)線方程為x=.離心率為 查看更多

 

題目列表(包括答案和解析)

(2008•湖北模擬)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,右準(zhǔn)線方程為x=
3
2
2
,左、右焦點(diǎn)分別為F1,F(xiàn)2
(Ⅰ)求橢圓C的方程
(Ⅱ)若直線l:y=kx+t(t>0)與以F1F2為直徑的圓相切,并與橢圓C交于A,B兩點(diǎn),向量
AB
|
AB
|
在向量
F1F
2
方向上的投影是p,且(
OA
OB
)p2=m
(O為坐標(biāo)原點(diǎn)),求m與k的關(guān)系式;
(Ⅲ)在(Ⅱ)情形下,當(dāng)m∈[
1
4
,
1
2
]
時(shí),求△ABC面積的取值范圍.

查看答案和解析>>

從橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)P向x軸引垂線,垂足恰為橢圓的左焦點(diǎn)F1,A為橢圓的右頂點(diǎn),B是橢圓的上頂點(diǎn),且
AB
OP
(λ>0)

(1)求該橢圓的離心率.
(2)若該橢圓的準(zhǔn)線方程是x=±2
5
,求橢圓方程.

查看答案和解析>>

已知橢圓
x2
a2
+
x2
b2
=1(a>b>o)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F1的直線l與該橢圓相交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程式.

查看答案和解析>>

(2012•瀘州一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)是焦距的2倍,右準(zhǔn)線方程為x=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)D坐標(biāo)為(4,0),橢圓C上動(dòng)點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)P,直線PD交橢圓C于點(diǎn)R(異于點(diǎn)P),求證:直線QR過定點(diǎn).

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案