∵焦點(diǎn)(0.2)在y軸上.∴a2=.b2=1.又∵c2=a2-b2=4.∴k=1 查看更多

 

題目列表(包括答案和解析)

已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

【解析】(1)中利用點(diǎn)F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

(2012•紹興模擬)已知F1,F(xiàn)2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P在橢圓上,且F1PF2=
π
2
,記線段PF1與Y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1:2,則該橢圓的離心率等于( 。

查看答案和解析>>

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P(1,
2
2
)在橢圓上,線段PF1與y軸的交點(diǎn)M滿足
PM
=
MF2

(1)求橢圓的標(biāo)準(zhǔn)方程;   
(2)(文)過F2的直線l交橢圓于A,B兩點(diǎn),且
AF2
=2
F2B
,求直線l方程.
(2)(理)過F1作不與x軸重合的直線l,l與圓x2+y2=a2+b2相交于A、B.并與橢圓相交于C、D.當(dāng)
F2A
F2B
,且λ∈[
2
3
,1]
時,求△F2CD的面積S的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,橢圓E:
x2
a2
+
y2
b2
=1
(a>0,b>0)經(jīng)過點(diǎn)A(
6
2
,
2
),且點(diǎn)F(0,-1)為其一個焦點(diǎn).   
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E與y軸的兩個交點(diǎn)為A1,A2,不在y軸上的動點(diǎn)P在直線y=b2上運(yùn)動,直線PA1,PA2分別與橢圓E交于點(diǎn)M,N,證明:直線MN通過一個定點(diǎn),且△FMN的周長為定值.

查看答案和解析>>

精英家教網(wǎng)已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案