的條件下.若拋物線焦點(diǎn)F到直線x+y=m的距離為.求此直線的方程, 查看更多

 

題目列表(包括答案和解析)

(08年黃岡中學(xué)一模文)   (14分)已知橢圓過定點(diǎn)A(1,0),焦點(diǎn)在x軸上,且離心率e滿足

(I)求的取值范圍;

(II)若橢圓與的交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍;

(Ⅲ)在條件(II)下,現(xiàn)有以A為焦點(diǎn),過點(diǎn)B且開口向左的拋物線,拋物線的頂點(diǎn)坐標(biāo)為M(m,0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

拋物線方程為y2=px+1)(p>0),直線x+y=mx軸的交點(diǎn)在拋物線的準(zhǔn)線的右邊.

(1)求證:直線與拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線與拋物線的交點(diǎn)為QR,OQOR,求p關(guān)于m的函數(shù)fm)的表達(dá)式;

(3)(文)在(2)的條件下,若拋物線焦點(diǎn)F到直線x+y=m的距離為,求此直線的方程;

(理)在(2)的條件下,若m變化,使得原點(diǎn)O到直線QR的距離不大于,求p的值的范圍.

查看答案和解析>>

拋物線方程為y2=px+1)(p>0),直線x+y=mx軸的交點(diǎn)在拋物線的準(zhǔn)線的右邊.

(1)求證:直線與拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線與拋物線的交點(diǎn)為Q、ROQOR,求p關(guān)于m的函數(shù)fm)的表達(dá)式;

(3)(文)在(2)的條件下,若拋物線焦點(diǎn)F到直線x+y=m的距離為,求此直線的方程;

(理)在(2)的條件下,若m變化,使得原點(diǎn)O到直線QR的距離不大于,求p的值的范圍.

查看答案和解析>>

(文科做(1)(2)(4),理科全做)
已知過拋物線C1:y2=2px(p>0)焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn) 
(1)證明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)點(diǎn)Q為線段AB的中點(diǎn),求點(diǎn)Q的軌跡方程;
(3)若x1=1,x2=4,以坐標(biāo)軸為對稱軸的橢圓或雙曲線C2過A、B兩點(diǎn),求曲線C1和C2的方程;
(4)在(3)的條件下,若曲線C2的兩焦點(diǎn)分別為F1、F2,線段AB上有兩點(diǎn)C(x3,y3),D(x4,y4)(x3<x4),滿足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在線段F1 F2上是否存在一點(diǎn)P,使PD=
11
,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

(08年楊浦區(qū)測試)設(shè)拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的直線交拋物線于兩點(diǎn),且兩點(diǎn)坐標(biāo)分別為是拋物線的準(zhǔn)線上的一點(diǎn),是坐標(biāo)原點(diǎn).若直線、的斜率分別記為:、、,(如圖)

   (1)若,求拋物線的方程.

   (2)當(dāng)時(shí),求的值.

   (3)如果取, 時(shí),

(文科考生做)判定的值大小關(guān)系.并說明理由.

   (理科考生做)判定的值大小關(guān)系.并說明理由.

通過你對以上問題的研究,請概括出在怎樣的更一般的條件下,使得你研究的結(jié)果(即的值大小關(guān)系)不變,并證明你的結(jié)論.

 

 

查看答案和解析>>


同步練習(xí)冊答案