即tanα=當(dāng)斜率不存在時(shí).直線(xiàn)x=0是圓的切線(xiàn)又∵兩切線(xiàn)的夾角為∠α的余角 查看更多

 

題目列表(包括答案和解析)

下列命題正確的是


  1. A.
    若直線(xiàn)的斜率存在,則必有傾斜角α與它對(duì)應(yīng)
  2. B.
    若直線(xiàn)的傾斜角存在,則必有斜率與它對(duì)應(yīng)
  3. C.
    直線(xiàn)的斜率不存在時(shí),直線(xiàn)的傾斜角不一定為90°
  4. D.
    直線(xiàn)的傾斜角為α,則這條直線(xiàn)的斜率為tanα

查看答案和解析>>

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線(xiàn)與橢圓必相交.

①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且,.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直線(xiàn)的方程為 

 

查看答案和解析>>

下列命題:

①若兩直線(xiàn)平行,則其斜率相等;②若兩直線(xiàn)垂直,則其斜率之積為-1;③垂直于x軸的直線(xiàn)平行于y軸.

其中正確命題的個(gè)數(shù)為(    )

A.0             B.1             C.2             D.3

A思路解析:①兩直線(xiàn)斜率不存在時(shí),也可以平行,故不對(duì);

②兩直線(xiàn)一條不存在斜率,另一條斜率為0,此時(shí)也垂直,故不對(duì).

③垂直于x軸的直線(xiàn)不一定平行于y軸,可以與y軸重合,故不對(duì)

查看答案和解析>>

下列命題中,真命題是


  1. A.
    若sinA=數(shù)學(xué)公式,則A=30°
  2. B.
    若m>0,則x2+x+m=0有實(shí)根
  3. C.
    存在實(shí)數(shù)a,b∈(0,+∞),當(dāng)a+b=1時(shí),數(shù)學(xué)公式
  4. D.
    x+y≠2012是x≠1006或y≠1006的充分不必要條件

查看答案和解析>>

已知點(diǎn)A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線(xiàn)PA與PB交于點(diǎn)P,且它們的斜率之積是-
1
2

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程,并求出曲線(xiàn)C的離心率的值;
(Ⅱ)設(shè)直線(xiàn)l:y=kx+1與曲線(xiàn)C交于M、N兩點(diǎn),當(dāng)線(xiàn)段MN的中點(diǎn)在直線(xiàn)x+2y=0上時(shí),求直線(xiàn)l的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案