∴|PC|2=(1-x)2+(1+2+x)2= 查看更多

 

題目列表(包括答案和解析)

.已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

 

查看答案和解析>>

.已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   
(1)求雙曲線G的漸近線的方程;  
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

查看答案和解析>>

(本小題滿分12分)

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

 

 

查看答案和解析>>

(本小題滿分12分)
已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   
(1)求雙曲線G的漸近線的方程;  
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

查看答案和解析>>


同步練習冊答案