解析:變形得>0.即>0.所以x<-3或x>4. 查看更多

 

題目列表(包括答案和解析)

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.

(Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)

第二問,  

當(dāng)且僅當(dāng)

(3)令

∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計(jì)廚余垃圾投放正確的概率

(Ⅱ)試估計(jì)生活垃圾投放錯(cuò)誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差最大時(shí),寫出a,b,c的值(結(jié)論不要求證明),并求此時(shí)的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯(cuò)誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當(dāng)時(shí),方差取得最大值,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112368256370974_ST.files/image011.png">,

所以

 

查看答案和解析>>

近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計(jì)廚余垃圾投放正確的概率

(Ⅱ)試估計(jì)生活垃圾投放錯(cuò)誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差最大時(shí),寫出a,b,c的值(結(jié)論不要求證明),并求此時(shí)的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯(cuò)誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當(dāng)時(shí),方差取得最大值,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244496713423101_ST.files/image011.png">,

所以

 

查看答案和解析>>

已知函數(shù)f(x)=ax2+(b-8)x-a-ab.當(dāng)x∈(-3,2)時(shí),f(x)>0,當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=
a3
x2+2tanθ•x+b
在區(qū)間[1,+∞)上單調(diào),求θ的取值范圍;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2對(duì)x∈[-1,1]及t∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取范圍.

查看答案和解析>>

已知函數(shù)f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0,當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集為R,求c的取值范圍;
(3)當(dāng)x>-1時(shí),求y=
f(x)-21x+1
的最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案