如圖5―12.在四棱錐P―ABCD中.底面ABCD是一直角梯形.∠BAD=90°.AD∥BC.AB=BC=a.AD=2a.且PA⊥底面ABCD.PD與底面成30°角.(1)若AE⊥PD.E為垂足.求證:BE⊥PD,(2)求異面直線AE與CD所成角的大小. 查看更多

 

題目列表(包括答案和解析)

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內接四邊形,其中是圓的直徑,,,

直底面,,分別是上的點,且

,過點的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當時,求的面積.

查看答案和解析>>

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內接四邊形,其中是圓的直徑,,

直底面,,分別是上的點,且

,過點的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當時,求的面積.

查看答案和解析>>

17、如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點.
(1)求證:CD⊥PD;
(2)求證:EF∥平面PAD、

查看答案和解析>>

已知△ABC是腰長為2的等腰直角三角形(如圖1),∠BCA=90°,在邊AC、AB上分別取點E、F、,使得EF∥BC,把△AEF沿直線EF折起,使∠AEC=90°,得四棱錐A-ECBF(如圖2).在四棱錐A-ECBF中,
(I)求證:CE⊥AF; 
(II)當AE=EC時,試在AB上確定一點G,使得GF∥面AEC,并證明你的結論.

查看答案和解析>>

(2013•杭州二模)如圖,已知在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA=
3
,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點.
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點F作平面α,使ED∥平面α,當平面α⊥平面EDG時,設PA與平面α交于點Q,求PQ的長.

查看答案和解析>>


同步練習冊答案