(Ⅰ)證明:設(shè){an}的公比為q.由題設(shè)知a1>0.q>0(?)當(dāng)q=1時(shí).Sn=a1n.從而SnSn+2-Sn+12=a1n(n+2)a1-(n+1)2a12=-a12<0 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于(    )

A.1   B.-      C.-1或   D.1或-

 

查看答案和解析>>

 已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于(    )A.1   B.-      C.-1或   D.1或-

 

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于(    )A.1   B.-         C.-1或   D.1或-

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于(    )A.1   B.-         C.-1或   D.1或-

查看答案和解析>>

已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q(q>1).設(shè)sn=a1b1+a2b2+…+anbn,Tn=a1b1-a2b2+…+(-1)n-1anbn,n∈N+,
(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;
(Ⅱ)若b1(6)=1,證明(1-q)S2n-(1+q)T2n=
2dq(1-q2n)1-q2
,n∈(10)N+;
(Ⅲ)若正數(shù)n滿足2≤n≤q,設(shè)k1,k2,…,kn和l1,l2,…,ln是1,2,…,n的兩個(gè)不同的排列,c1=ak1b1+ak2b2+…+aknbn,c2=al1b1+al2b2+…+alnbn證明c1≠c2

查看答案和解析>>


同步練習(xí)冊答案