那么.當(dāng)n=k+1時.(1+1)(1+)-(1+)[1+]> 查看更多

 

題目列表(包括答案和解析)

數(shù)列,滿足

(1)求,并猜想通項(xiàng)公式。

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問利用遞推關(guān)系式得到,,,,并猜想通項(xiàng)公式

第二問中,用數(shù)學(xué)歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設(shè)n=k時,成立,

那么當(dāng)n=k+1時,

,所以當(dāng)n=k+1時結(jié)論成立可證。

數(shù)列,滿足

(1),,并猜想通項(xiàng)公。  …4分

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設(shè)n=k時,成立,

那么當(dāng)n=k+1時,

,             ……9分

所以

所以當(dāng)n=k+1時結(jié)論成立                     ……11分

由①②知,猜想對一切自然數(shù)n均成立

 

查看答案和解析>>

已知某個命題,若當(dāng)n=kkN*)時該命題成立,則可推得當(dāng)n=k+1時該命題也成立.現(xiàn)已知當(dāng)n=4時該命題不成立,那么可推得下述結(jié)論中成立的個數(shù)是

n=1時該命題不成立  ②n=2時該命題不成立  ③n=3時該命題不成立

A.0                              B.1                              C.2                              D.3

查看答案和解析>>

1、一個關(guān)于自然數(shù)n的命題,如果驗(yàn)證當(dāng)n=1時命題成立,并在假設(shè)當(dāng)n=k(k≥1且k∈N*)時命題成立的基礎(chǔ)上,證明了當(dāng)n=k+2時命題成立,那么綜合上述,對于( 。

查看答案和解析>>

已知函數(shù)f(n)=log(n+1)(n+2)(n為正整數(shù)),若存在正整數(shù)k滿足:f(1)•f(2)…f(n)=k,那么我們將k叫做關(guān)于n的“對整數(shù)”.當(dāng)n∈[1,2012]時,則“對整數(shù)”的個數(shù)為
9
9
個.

查看答案和解析>>

已知函數(shù)f(n)=log(n-1)(n+2)(n為正整數(shù)),若存在正整數(shù)k滿足:f(1)•f(2)…f(n)=k,那么我們將k叫做關(guān)于n的“對整數(shù)”.當(dāng)n∈[1,2012]時,則“對整數(shù)”的個數(shù)為______個.

查看答案和解析>>


同步練習(xí)冊答案