∴Ak+1-Bk+1>又∵k=8.9.10- ∴Ak+1-Bk+1>0.綜上所述.An>Bn成立. 查看更多

 

題目列表(包括答案和解析)

定義函數(shù)fn(x)=(1+x)n-1(x>-2,n∈N*)其導(dǎo)函數(shù)記為
f
n
(x)

(Ⅰ)求y=fn(x)-nx的單調(diào)遞增區(qū)間;
(Ⅱ)若
f
n
(x0)
f
n+1
(x0)
=
fn(1)
fn+1(1)
,求證:0<x0<1;
(Ⅲ)設(shè)函數(shù)φ(x)=f3(x)-f2(x),數(shù)列{ak}前k項和為Sk,2kSk=φ(k-1)+2kak,其中a1=1.對于給定的正整數(shù)n(n≥2),數(shù)列{bn}滿足ak+1bk+1=(k-n)bk(k=1,2…,n-1),且b1=1,求b1+b2+…+bn

查看答案和解析>>

將集合M={1,2,…12}的元素分成不相交的三個子集:M=A∪B∪C,其中A={a1,a2,a3,a4}B={b1,b2,b3,b4}C={c1,c2,c3,c4},c1<c2<c3<c4,且ak+bk=ck,k=1,2,3,4,則集合C為:
{8,9,10,12},{7,9,11,12},{6,10,11,12}
{8,9,10,12},{7,9,11,12},{6,10,11,12}

查看答案和解析>>

將含有3n個正整數(shù)的集合M分成元素個數(shù)相等且兩兩沒有公共元素的三個集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,則x的一個可能值為
7,9,11
7,9,11
.(寫出一個即可)
(2)對于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,其元素乘積最小的集合是
{6,10,11,12}
{6,10,11,12}

查看答案和解析>>

(本小題滿分12分)
已知數(shù)列{an}的前三項與數(shù)列{bn}的前三項對應(yīng)相等,且a1+2a2+22a3+…+2n-1an=8n對任意的n∈N*都成立,數(shù)列{bn+1bn}是等差數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)是否存在k∈N*,使得bkak∈(0,1)?請說明理由.

查看答案和解析>>

已知數(shù)列{an}的前三項與數(shù)列{bn}的前三項對應(yīng)相同,且a1+2a2+22a3+…+2n-1an=8n對任意的n∈N+都成立,數(shù)列{bn+1-bn}是等差數(shù)列.

(1)求數(shù)列{an}與{bn}的通項公式;

(2)問是否存在k∈N+,使得bk-ak∈(0,1)?請說明理由.

查看答案和解析>>


同步練習(xí)冊答案