∴(b1+b2+-+bn)=[2(a1+a2+-+an)-2a1]=2×-2×2=2. 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S5=15,數(shù)列{bn}滿足:b1=
1
2
2bn+1=(1+
1
an
)bn
,
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)Tn=b1+b2+…+bncn=
2-Tn
4Sn
,證明:c1+c2+…+cn
1
2

查看答案和解析>>

加試題:已知曲線C:y=
1
x
(x>0)
,過P1(1,0)作y軸的平行線交曲線C于Q1,過Q1作曲線C的切線與x軸交于P2,過P2作與y軸平行的直線交曲線C于Q2,照此下去,得到點(diǎn)列P1,P2,…,和Q1,Q2,…,設(shè)|
PnQn
|=an
,
2
|
QnQn+1
|=bn(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:b1+b2+…+bn>2n-2-n;
(3)求證:曲線C與它在點(diǎn)Qn處的切線,以及直線Pn+1Qn+1所圍成的平面圖形的面積與正整數(shù)n的值無關(guān).

查看答案和解析>>

加試題:已知曲線,過P1(1,0)作y軸的平行線交曲線C于Q1,過Q1作曲線C的切線與x軸交于P2,過P2作與y軸平行的直線交曲線C于Q2,照此下去,得到點(diǎn)列P1,P2,…,和Q1,Q2,…,設(shè)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:b1+b2+…+bn>2n-2-n;
(3)求證:曲線C與它在點(diǎn)Qn處的切線,以及直線Pn+1Qn+1所圍成的平面圖形的面積與正整數(shù)n的值無關(guān).

查看答案和解析>>

一非零向量列{an}滿足:a1=(x1,y1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n≥2),

(1)證明:{|an|}是等比數(shù)列;

(2)求an-1an的夾角θn(n≥2),若bn=2nθn-1,Sn=b1+b2+…bn,求Sn;

(3)設(shè)a1=(1,2),把a1,a2,…,an,…中所有與a1共線的向量按照原來的順序排成一列,記為b1,b2,…,bn,…,令Obn=b1+b2+b3+…+bn(O為坐標(biāo)原點(diǎn)),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo)(注:若點(diǎn)Bn的坐標(biāo)為(tn,sn)且tn=t,sn=s,則點(diǎn)B(t,s)為點(diǎn)列{Bn}的極限點(diǎn)).

查看答案和解析>>

已知數(shù)列{an},其中a1=1,an=3n-1•an-1(n≥2,n∈N),數(shù)列{bn}的前n項(xiàng)和Sn=log3(
an9n
)
其中n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求Tn=|b1|+|b2|+…+|bn|.

查看答案和解析>>


同步練習(xí)冊答案