解法一:an=∴an=2n-1(n∈N) 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}由a1=2,an+1=an+2n+(-1)n確定,則a100=( 。

查看答案和解析>>

已知an=
2n-1
n+1
(2+
1
n
)
m
1≤n≤100
 
n>101
(正整數(shù)m為常數(shù)),則
lim
n→∞
an
=
2m
2m

查看答案和解析>>

已知數(shù)列{an}中,a1=2,an+1-an-2n-2=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
1
6
bn
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

已知數(shù)列{an},通項(xiàng)an=(2n+
1
2n
)2,n∈N*
,則它的前n項(xiàng)和Sn=
4n+1
3
-
1
3•4n
+2n-1
4n+1
3
-
1
3•4n
+2n-1

查看答案和解析>>

(2013•石景山區(qū)二模)在等差數(shù)列{an}中,a2=5,a1+a4=12,則an=
2n+1
2n+1
;設(shè)bn=
1
a
2
n
-1
  (n∈N*)
,則數(shù)列{bn}的前n項(xiàng)和Sn=
n
4(n+1)
n
4(n+1)

查看答案和解析>>


同步練習(xí)冊(cè)答案