答案:B解析:∵k∈N*.∴當(dāng)k=0.1.2.-7時(shí).利用an+8=an.數(shù)列{a3k+1}可以取遍數(shù)列{an}的前8項(xiàng).評(píng)述:本題考查了數(shù)列的基本知識(shí)和考生分析問(wèn)題.解決問(wèn)題的能力. 查看更多

 

題目列表(包括答案和解析)

某同學(xué)對(duì)100名學(xué)生進(jìn)行了喜歡運(yùn)動(dòng)與身體健康的關(guān)系的調(diào)查,數(shù)據(jù)如下表:
喜歡運(yùn)動(dòng) 不喜歡運(yùn)動(dòng) 合計(jì)
身體健康 40 10 50
身體不健康 30 20 50
合計(jì) 70 30 100
參照下表
P(K2≥k) 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
則認(rèn)為喜歡運(yùn)動(dòng)與身體健康是否有關(guān)系的把握大約為(  )
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
A、90%B、95%
C、99%D、99.9%

查看答案和解析>>

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且對(duì)x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時(shí),f(x)=x.
(1)當(dāng)x∈[-1,0]時(shí),求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個(gè)問(wèn)題中選擇一個(gè)寫(xiě)出結(jié)論即可(無(wú)需寫(xiě)解題步驟).注意:考生若選擇多于一個(gè)問(wèn)題解答,則按分?jǐn)?shù)最低一個(gè)問(wèn)題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時(shí),求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時(shí),若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時(shí),求f(x)的解析式.

查看答案和解析>>

(2012•浦東新區(qū)一模)設(shè)函數(shù)T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函數(shù)y=T(sin(
π
2
x))和y=sin(
π
2
T(x))的解析式;
(2)是否存在非負(fù)實(shí)數(shù)a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當(dāng)x∈[0,
1
2n
]時(shí),求y=Tn(x)的解析式;
已知下面正確的命題:當(dāng)x∈[
i-1
2n
,
i+1
2n
](i∈N*,1≤i≤2n-1)時(shí),都有Tn(x)=Tn
i
2n-1
-x)恒成立.
②對(duì)于給定的正整數(shù)m,若方程Tm(x)=kx恰有2m個(gè)不同的實(shí)數(shù)根,確定k的取值范圍;若將這些根從小到大排列組成數(shù)列{xn}(1≤n≤2m),求數(shù)列{xn}所有2m項(xiàng)的和.

查看答案和解析>>

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整數(shù)a,b屬于同一‘類’”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的是
①③④
①③④

查看答案和解析>>

(2011•深圳二模)已知函數(shù)f(x)滿足如下條件:當(dāng)x∈(-1,1]時(shí),f(x)=ln(x+1),x∈R,且對(duì)任意x∈R,都有f(x+2)=2f(x)+1.
(1)求函數(shù)f(x)的圖象在點(diǎn)(0,f(0))處的切線方程;
(2)求當(dāng)x∈(2k-1,2k+1],k∈N*時(shí),函數(shù)f(x)的解析式;
(3)是否存在xk∈(2k-1,2k+1],k=0,1,2,…,2011,使得等式
2011k=0
[2kxk-f(xk)]=4019×22012+2017
成立?若存在就求出xk(k=0,1,2,…,2011),若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案