設(shè)數(shù)列{an}是遞增等差數(shù)列.前三項(xiàng)的和為12.前三項(xiàng)的積為48.則它的首項(xiàng)是A.1 B.2 C.4 D.6 查看更多

 

題目列表(包括答案和解析)

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項(xiàng)均為正數(shù),a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當(dāng)k=1,p=5時(shí),若數(shù)列{an}是成等比數(shù)列,求t的值;
(2)當(dāng)t=1,k=1時(shí),設(shè)Tn=a1+
a2
p
+
a3
p2
+…+
an-1
pn-1
+
an
pn-1
,參照高二教材書上推導(dǎo)等比數(shù)列前n項(xiàng)求和公式的推導(dǎo)方法,求證:數(shù)列
1+p
p
Tn-
an
pn
-6n
是一個(gè)常數(shù);
(3)設(shè)數(shù)列{an}是一個(gè)等比數(shù)列,求t(用p,k的代數(shù)式表示).

查看答案和解析>>

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

數(shù)列{an} 的各項(xiàng)均為正數(shù),a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當(dāng)k=1,p=5時(shí),若數(shù)列{an}是成等比數(shù)列,求t的值;
(2)當(dāng)t=1,k=1時(shí),設(shè)Tn=a1+++…++,參照高二教材書上推導(dǎo)等比數(shù)列前n項(xiàng)求和公式的推導(dǎo)方法,求證:數(shù)列是一個(gè)常數(shù);
(3)設(shè)數(shù)列{an}是一個(gè)等比數(shù)列,求t(用p,k的代數(shù)式表示).

查看答案和解析>>


同步練習(xí)冊(cè)答案