如圖..其中四邊形是正 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,正六邊形ABCDEF中,有下列四個(gè)命題:
(A)
AC
+
AF
=2
BC

(B)
AD
=2
AB 
+2
AF
;
(C)
AC
AD
=
AD
AB
;
(D)(
AD
AF
)
EF
=
AD
(
AF
EF
)

其中真命題的代號(hào)是
 
(寫出所有真命題的代號(hào)).

查看答案和解析>>

精英家教網(wǎng)如圖,四邊形ABCD是一塊邊長(zhǎng)為4的正方形地域,地域內(nèi)有一條河流MD,其經(jīng)過的路線是以AB中點(diǎn)M為頂點(diǎn),且開口向右的拋物線(河流寬度不計(jì)).某公司準(zhǔn)備建一大型游樂園PQCN,問如何施工,才能使游樂園面積最大?并求出最大的面積.

查看答案和解析>>

精英家教網(wǎng)如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
BD
AC
≠0
;
②∠BAC=60°;
③三棱錐D-ABC是正三棱錐;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正確的是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

3、如圖,若Ω是長(zhǎng)方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1,則下列結(jié)論中不正確的是( 。

查看答案和解析>>

精英家教網(wǎng)如圖,正六邊形ABCDEF中,有下列四個(gè)命題:其中真命題的代號(hào)是
 

(1)
AC
+
AF
=2
BC
;(2)
AD
=2
AB
+2
AF
;(3)
AC
AD
=
AD
AB
;(4)
(AD
AF
)
EF
=
AD
(
AF
EF
)

查看答案和解析>>

 

說明:

       一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.

       二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

       三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

       四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基礎(chǔ)知識(shí)和基本運(yùn)算,每小題5分,滿分60分.

1. A   2. D   3. C   4. C   5. B   6. D   7. B   8. A   9. C   10. D   11. B   12. C

二、填空題:本題考查基礎(chǔ)知識(shí)和基本運(yùn)算,每小題4分,滿分16分.

13.         14.                 15.                 16.   

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

17. 本題主要考查三角函數(shù)的基本公式,考查運(yùn)算能力. 滿分12分.

解:(Ⅰ)在中,因?yàn)?sub>,

所以.   ……………………………(3分)

所以

.  …………………………(6分)

(Ⅱ)根據(jù)正弦定理得:,

所以. ……………………………(9分)

所以

. ………………………………………………………(12分)

18.本題主要考查直線與平面的位置關(guān)系,考查空間想像能力,推理論證能力和運(yùn)算求解能

力. 滿分12分.

解:(Ⅰ)因?yàn)槠矫鍭BCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE,

因?yàn)镚是等邊三角形ABE的邊AE的中點(diǎn),所以BG⊥AE,……………(2分)

所以

     .…………………………………………(4分)

(Ⅱ)取DE中點(diǎn)M,連結(jié)MG、FM,

因?yàn)镸G  AD,BF  AD,所以MG BF,

四邊形FBGM是平行四邊形,所以BG//FM.(6分)

又因?yàn)镕M平面EFD,BG平面EFD,

所以BG//平面EFD.         ………………(8分)

(Ⅲ)因?yàn)镈A⊥平面ABE,BG平面ABE,所以DA⊥BG. …………………(9分)

   又BG⊥AE,ADAE=A,

   所以BG⊥平面DAE,又AP平面DAE,………………………………(11分)

   所以BG⊥AP.    ……………………………………………………………(12分)

19. 本題主要考查等差數(shù)列、等比數(shù)列的基本知識(shí),考查運(yùn)算求解能力及推理能力. 滿分12分.

解:(Ⅰ)設(shè)該等差數(shù)列的公差為,依題意得:  ………(2分)

解得:  ………………………………………………………(4分)

所以數(shù)列的通項(xiàng)公式為.   ………………………………(6分)

(Ⅱ)依題意得:………………(9分)

.  ………(12分)

20. 本題主要考查概率、統(tǒng)計(jì)的基本知識(shí),考查應(yīng)用意識(shí). 滿分12分.

解:(Ⅰ)設(shè)每個(gè)報(bào)名者能被聘用的概率為P,依題意有:

.

答:每個(gè)報(bào)名者能被聘用的概率為0.02.  ………………………………………(4分)

(Ⅱ)設(shè)24名筆試者中有x名可以進(jìn)入面試,依樣本估計(jì)總體可得:

    ,解得:,從表中可知面試的切線分?jǐn)?shù)大約為80分.

答:可以預(yù)測(cè)面試的切線分?jǐn)?shù)大約為80分.  ……………………………………(8分)

(Ⅲ)從聘用的四男、二女中選派兩人的基本事件有:(a,b),( a,c) , (a, d) ,( a, e) ,

(a, f) ,( b, c) ,(b,d),( b, e) ,( b, f) ,(c, d) ,(c, e),( c, f) ,( d, e) ,( d, f) ,(e, f),共15種.

選派一男一女參加某項(xiàng)培訓(xùn)的種數(shù)有:

     (a,e) ,( a, f) , (b,e) ,(b, f),(c,e),(c, f) ,(d,e) ,(d, f),共8種

所以選派結(jié)果為一男一女的概率為.

答:選派結(jié)果為一男一女的概率為.       …………………………………(12分)

21.本題主要考查圓、直線與橢圓的位置關(guān)系等基本知識(shí),考查運(yùn)算求解能力和分析問題、

解決問題的能力. 滿分12分

解:(Ⅰ)由已知得,,所以

,所以,橢圓C的方程為   ………(3分)

因?yàn)?sub>,所以,可求得,…(5分)

所以的外接圓D的方程是

………………………………………………………………(7分)(少一解扣1分)

(Ⅱ)當(dāng)直線的斜率不存在時(shí),由(Ⅰ)得,,

可得,所以.…………………………………(8分)

當(dāng)直線的斜率存在時(shí),設(shè)其斜率為,顯然,

則直線的方程為,設(shè)點(diǎn)

代入方程,并化簡(jiǎn)得:

    ……………………………………(9分)

可得:,,     ……………………(10分)

所以

綜上,.  ………………………(12分)

22.本題主要考查函數(shù)的單調(diào)性、極值、最值、不等式、方程的解等基本知識(shí),考查運(yùn)用導(dǎo)

數(shù)研究函數(shù)性質(zhì)的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.

解:(Ⅰ)依題意,知的定義域?yàn)?sub>.    …………………………………(1分)

當(dāng)時(shí),,

.    ………………………………(2分)

,解得.

當(dāng)時(shí),,此時(shí)單調(diào)遞增;

當(dāng)時(shí),,此時(shí)單調(diào)遞減. ……………………………(3分)

所以的極大值為,此即為最大值 . ……………………(4分)

(Ⅱ),

所以,在上恒成立,………………(6分)

所以…………………………………(7分)

當(dāng)時(shí),取得最大值.所以. ………………(9分)

(Ⅲ)因?yàn)榉匠?sub>有唯一實(shí)數(shù)解,所以有唯一實(shí)數(shù)解.設(shè),則.

,得

因?yàn)?sub>,

所以(舍去),, ………(10分)

當(dāng)時(shí),,單調(diào)遞減,

當(dāng)時(shí),,單調(diào)遞增.

當(dāng)時(shí),取最小值.  ……………………(11分)

因?yàn)?sub>有唯一解,所以

,即

所以

因?yàn)?sub>,所以. …………………………(12分)

設(shè)函數(shù),

因?yàn)楫?dāng)時(shí),是增函數(shù),所以至多有一解.  ………(13分)

因?yàn)?sub>,所以方程的解為,即,

解得                ……………………………………………(14分)

 

 

 


同步練習(xí)冊(cè)答案