已知垂直.則的夾角是( ) (A)600 (B)900 (C)1350 (D)1200 查看更多

 

題目列表(包括答案和解析)

已知垂直,則的夾角是(  )

A.600    B.900    C.1350     D.1200 

查看答案和解析>>

已知兩個(gè)單位向量
a
b
的夾角為
π
3
,則
a
b
λ
a
-
b
互相垂直的充要條件是( 。
A、λ=-
3
2
λ=
3
2
B、λ=-
1
2
λ=
1
2
C、λ=-1或λ=1
D、λ為任意實(shí)數(shù)

查看答案和解析>>

已知
a
,
b
是夾角為120°的單位向量,則向量λ
a
+
b
a
-2
b
垂直的充要條件是實(shí)數(shù)λ的值為( 。
A、
5
4
B、
5
2
C、
3
4
D、
3
2

查看答案和解析>>

已知平面向量
a
b
滿足|
a
|=2,|
b
|=1,且2
a
-5
b
a
+
b
垂直,則
a
b
的夾角是( 。

查看答案和解析>>

已知為互相垂直的單位向量,,的夾角為銳角,則實(shí)數(shù)的取值范圍是(  )

A.                             B.

C.                     D.

 

查看答案和解析>>

一、選擇題:本大題12個(gè)小題,每小題5分,共60分.

BBDDC   DA CDA   CA

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13、i11,或i10;   14、2 ;  15、2  ;16.①②③④   ①③②④

三、解答題:本大題共6個(gè)小題,滿分74分.

17.解∵=   =

fx)=)?k

    

        …………………………4

(1)由題意可知,∴>1,∴0≤≤1   ……………………6

(2)∵T,∴=1 ∴f x)=sin(2x)+k

x ………………8

從而當(dāng)2x即x=時(shí)fmaxx)=f)=sink=k+1=

k=   f x)=sin(2x)…………………12

18、(本小題滿分12分)由ab、c成等差數(shù)列

ac=2b    平方得a2c2=4b22ac    ①……2

SABC且sin B=, ∴SABCac? sin B=ac×ac=

ac=    ②………………………………………………………………………4

由①②可得a2c2=4b2    ③…………………………………………………5

又∵sin B=,且a、b、c成等差數(shù)列∴cos B===…………8

由余弦定理得: b2=a2c22ac?cos Ba2c2-2××a2+c2    ④………10

由③④可得   b2=4∴b=2………………….…12

19、略解:(Ⅰ)數(shù)列{an}的前n項(xiàng)和為    a1= S1=1…………(1)

當(dāng)n2時(shí),an= Sn- Sn-1=n………………(3)       an=n………………(4)

(Ⅱ)由若b1=1,2bn-bn-1=0…………(5)

{bn}是以b1=1為首項(xiàng),1/2為公比的等比數(shù)列. …………(6)

…………(8) ………(9)

………(10)

兩式相減得: ………(11)

Tn<4………(12)

20、解:I)將C配方得:(x+1)2+(y-2)2=2………………(1分)

21、解:(1Q為PN的中點(diǎn)且GQ⊥PN

       GQ為PN的中垂線|PG|=|GN|                                 …………2

         ∴|GN|+|GM|=|MP|=6,故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng),半焦距,∴短半軸長(zhǎng)b=2,∴點(diǎn)G的軌跡方程是……4

   (2)因?yàn)?sub>,所以四邊形OASB為平行四邊形

       若存在l使得||=||,則四邊形OASB為矩形

       l的斜率不存在,直線l的方程為x=2,由

       矛盾,故l的斜率存在.  …………6

       設(shè)l的方程為

      

         

          ②                       …………10

       把①、②代入∴存在直線使得四邊形OASB的對(duì)角線相等.  …12

22、解:(Ⅰ)

因?yàn)楹瘮?shù)f(x)在區(qū)間[-1,1]上是增函數(shù),所以f(x)0在區(qū)間x[-1,1]恒成立

即有x2-ax-20在區(qū)間[-1,1]上恒成立。    構(gòu)造函數(shù)g(x)=x2-ax-2

∴滿足題意的充要條件是:

所以所求的集合A[-1,1] ………(7)

(Ⅱ)由題意得:得到:x2-ax-2=0………(8)

因?yàn)椤?/b>=a2+8>0 所以方程恒有兩個(gè)不等的根為x1、x2由根與系數(shù)的關(guān)系有:……(9)

因?yàn)?/b>aAa[-11],所以要使不等式對(duì)任意aAt[-1,1]恒成立,當(dāng)且僅當(dāng)對(duì)任意的t[-1,1]恒成立……(11)

構(gòu)造函數(shù)φ(x=m2+tm-2=mt+(m2-2) 0對(duì)任意的t[-1,1]恒成立的充要條件是

m2m-2.故存在實(shí)數(shù)m滿足題意且為

{m| m2m-2}為所求     14分)

 

 


同步練習(xí)冊(cè)答案