(2)若數(shù)列滿(mǎn)足, 查看更多

 

題目列表(包括答案和解析)

若數(shù)列滿(mǎn)足:,則           ;前8項(xiàng)的和

          .(用數(shù)字作答)

查看答案和解析>>

(14分)若數(shù)列滿(mǎn)足,其中為常數(shù),則稱(chēng)數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿(mǎn)足成等比數(shù)列且互不相等.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前項(xiàng)和;

    (Ⅲ)是否存在實(shí)數(shù),使得對(duì)一切正整數(shù),總有成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

(14分)若數(shù)列滿(mǎn)足其中為常數(shù),則稱(chēng)數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿(mǎn)足.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前項(xiàng)和;

    (Ⅲ)記,則當(dāng)實(shí)數(shù)大于4時(shí),不等式能否對(duì)于一切的恒成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

        若數(shù)列滿(mǎn)足:,則           ;前8項(xiàng)的和          。(用數(shù)字作答)

查看答案和解析>>

若數(shù)列滿(mǎn)足:是常數(shù)),則稱(chēng)數(shù)列為二階線(xiàn)性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱(chēng)為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:

①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));

②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));

再利用可求得,進(jìn)而求得

根據(jù)上述結(jié)論求下列問(wèn)題:

(1)當(dāng),)時(shí),求數(shù)列的通項(xiàng)公式;

(2)當(dāng),)時(shí),求數(shù)列的通項(xiàng)公式;

(3)當(dāng),)時(shí),記,若能被數(shù)整除,求所有滿(mǎn)足條件的正整數(shù)的取值集合.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個(gè)單位,得到函數(shù)的圖象.

,…………………………8分

對(duì)稱(chēng),

…………………………10分

…………………………12分

18.(本小題滿(mǎn)分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿(mǎn)分12分)

證明:(1)取AC中點(diǎn)O,

      ∴PO⊥AC,

      又∵面PAC⊥面ABC,PO面PAC,

      ∴PO⊥面ABC,……………………2分

      連結(jié)OD,則OD//BC,

      ∴DO⊥AC,

      由三垂線(xiàn)定理知AC⊥PD.……………………4分

      (2)連接OB,過(guò)E作EF⊥OB于F,

      又∵面POB⊥面ABC,

      ∴EF⊥面ABC,

      過(guò)F作FG⊥AC,連接EG,

      由三垂線(xiàn)定理知EG⊥AC,

      ∴∠EGF即為二面角E―AC―B的平面角…………6分

      ……………………9分

      (3)由題意知

      .…………………………12分

      20.(本小題滿(mǎn)分12分)

      解:(1)設(shè)“生產(chǎn)一臺(tái)儀器合格”為事件A,則

      ……………………2分

      (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

      所以的分布列為:

      3

      2

      1

      0

      P

       

      的數(shù)學(xué)期望

      …………9分

      (3)該廠(chǎng)每生產(chǎn)一件儀器合格率為,

      ∴每臺(tái)期望盈利為(萬(wàn)元)

      ∴該廠(chǎng)每月期望盈利額為萬(wàn)元……………………12分

      21.(本小題滿(mǎn)分12分)

      解:(1)設(shè)

      ,

      …………………………3分

      ,這就是軌跡E的方程.……………………4分

      (2)當(dāng)時(shí),軌跡為橢圓,方程為①…………5分

      設(shè)直線(xiàn)PD的方程為

      代入①,并整理,得

         ②

      由題意,必有,故方程②有兩上不等實(shí)根.

      設(shè)點(diǎn)

      由②知,………………7分

      直線(xiàn)QF的方程為

      當(dāng)時(shí),令,

      代入

      整理得

      再將代入,

      計(jì)算,得x=1,即直線(xiàn)QF過(guò)定點(diǎn)(1,0)

      當(dāng)k=0時(shí),(1,0)點(diǎn)……………………12分

      22.(本小題滿(mǎn)分14分)

      解:(1)

      由題知,即a-1=0,∴a=1.……………………………2分

      x≥0,∴≥0,≥0,

      又∵>0,∴x≥0時(shí),≥0,

      上是增函數(shù).……………………4分

      (Ⅱ)由(Ⅰ)知

      下面用數(shù)學(xué)歸納法證明>0.

      ①當(dāng)n=1時(shí),=1>0成立;

      ②假設(shè)當(dāng)時(shí),>0,

      上是增函數(shù),

      >0成立,

      綜上當(dāng)時(shí),>0.……………………………………6分

      >0,1+>1,∴>0,

      >0,∴,…………………………………8分

      =1,∴≤1,綜上,0<≤1.……………………………9分

      (3)∵0<≤1,

      ,

      ,

      ,

      >0,………………………………………11分

      =??……

        =n.……………………………12分

      ∴Sn++…+

      +()2+…+()n

      ==1.

      ∴Sn<1.………………………………………………………………14分

       

       

       


      同步練習(xí)冊(cè)答案