(1)求實數(shù)a的值.并判斷上的單調性, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處取得極值.

   (1)求實數(shù)a的值,并判斷上的單調性;

   (2)若數(shù)列滿足;

   (3)在(2)的條件下,

求證:

查看答案和解析>>

已知函數(shù)處取得極值.
(1)求實數(shù)a的值,并判斷上的單調性;
(2)若數(shù)列滿足
(3)在(2)的條件下,

求證:

查看答案和解析>>

(1) 判斷函數(shù)f(x)=x+在x∈(0,+∞)上的單調性并證明你的結論?
(2)猜想函數(shù)f(x)=x+,(a>0)在x∈(-∞,0)∪(0,+∞)上的單調性?(只需寫出結論,不用證明)
(3)利用題(2)的結論,求使不等式x+-m2<0在x∈[1,5]上恒成立時的實數(shù)m的取值范圍?

查看答案和解析>>

已知實數(shù)m為非零常數(shù),且f(x)=loga(1+
mx-1
)
(a>0且a≠1)為奇函數(shù).
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調性,并用單調性定義加以證明;
(3)當x∈(b,a)時,函數(shù)f(x)的值域為(1,+∞),請確定實數(shù)a與b的取值.

查看答案和解析>>

已知實數(shù)a>0,函數(shù)f(x)=
1-x2
1+x2
+a
1+x2
1-x2

(1)當a=1時,求f(x)的最小值;
(2)當a=1時,判斷f(x)的單調性,并說明理由;
(3)求實數(shù)a的范圍,使得對于區(qū)間[-
2
5
5
,
2
5
5
]
上的任意三個實數(shù)r、s、t,都存在以f(r)、f(s)、f(t)為邊長的三角形.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

<fieldset id="ost2r"><i id="ost2r"></i></fieldset>
        <address id="ost2r"><i id="ost2r"></i></address>
        1. ∴PO⊥AC,

          又∵面PAC⊥面ABC,PO面PAC,

          ∴PO⊥面ABC,……………………2分

          連結OD,則OD//BC,

          ∴DO⊥AC,

          由三垂線定理知AC⊥PD.……………………4分

          (2)連接OB,過E作EF⊥OB于F,

          又∵面POB⊥面ABC,

          ∴EF⊥面ABC,

          過F作FG⊥AC,連接EG,

          由三垂線定理知EG⊥AC,

          ∴∠EGF即為二面角E―AC―B的平面角…………6分

          ……………………9分

          (3)由題意知

          .…………………………12分

          20.(本小題滿分12分)

          解:(1)設“生產(chǎn)一臺儀器合格”為事件A,則

          ……………………2分

          (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

          所以的分布列為:

          3

          2

          1

          0

          P

           

          的數(shù)學期望

          …………9分

          (3)該廠每生產(chǎn)一件儀器合格率為,

          ∴每臺期望盈利為(萬元)

          ∴該廠每月期望盈利額為萬元……………………12分

          21.(本小題滿分12分)

          解:(1)設

          ,

          ,

          …………………………3分

          ,這就是軌跡E的方程.……………………4分

          (2)當時,軌跡為橢圓,方程為①…………5分

          設直線PD的方程為

          代入①,并整理,得

             ②

          由題意,必有,故方程②有兩上不等實根.

          設點

          由②知,………………7分

          直線QF的方程為

          時,令,

          代入

          整理得,

          再將代入,

          計算,得x=1,即直線QF過定點(1,0)

          當k=0時,(1,0)點……………………12分

          22.(本小題滿分14分)

          解:(1)

          由題知,即a-1=0,∴a=1.……………………………2分

          x≥0,∴≥0,≥0,

          又∵>0,∴x≥0時,≥0,

          上是增函數(shù).……………………4分

          (Ⅱ)由(Ⅰ)知

          下面用數(shù)學歸納法證明>0.

          ①當n=1時,=1>0成立;

          ②假設當時,>0,

          上是增函數(shù),

          >0成立,

          綜上當時,>0.……………………………………6分

          >0,1+>1,∴>0,

          >0,∴,…………………………………8分

          =1,∴≤1,綜上,0<≤1.……………………………9分

          (3)∵0<≤1,

          ,

          ,

          ,

          >0,………………………………………11分

          =??……

            =n.……………………………12分

          ∴Sn++…+

          +()2+…+()n

          ==1.

          ∴Sn<1.………………………………………………………………14分

           

           

           


          同步練習冊答案