20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個(gè)單位,得到函數(shù)的圖象.

,…………………………8分

對(duì)稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點(diǎn)O,

<i id="6hmjc"><del id="6hmjc"><p id="6hmjc"></p></del></i>

        <ruby id="6hmjc"><th id="6hmjc"><track id="6hmjc"></track></th></ruby>

              <pre id="6hmjc"><dfn id="6hmjc"></dfn></pre>
              <td id="6hmjc"><form id="6hmjc"><legend id="6hmjc"></legend></form></td>

              ∴PO⊥AC,

              又∵面PAC⊥面ABC,PO面PAC,

              ∴PO⊥面ABC,……………………2分

              連結(jié)OD,則OD//BC,

              ∴DO⊥AC,

              由三垂線定理知AC⊥PD.……………………4分

              (2)連接OB,過E作EF⊥OB于F,

              又∵面POB⊥面ABC,

              ∴EF⊥面ABC,

              過F作FG⊥AC,連接EG,

              由三垂線定理知EG⊥AC,

              ∴∠EGF即為二面角E―AC―B的平面角…………6分

              ……………………9分

              (3)由題意知

              .…………………………12分

              20.(本小題滿分12分)

              解:(1)設(shè)“生產(chǎn)一臺(tái)儀器合格”為事件A,則

              ……………………2分

              (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

              所以的分布列為:

              3

              2

              1

              0

              P

               

              的數(shù)學(xué)期望

              …………9分

              (3)該廠每生產(chǎn)一件儀器合格率為,

              ∴每臺(tái)期望盈利為(萬元)

              ∴該廠每月期望盈利額為萬元……………………12分

              21.(本小題滿分12分)

              解:(1)設(shè)

              ,

              …………………………3分

              ,這就是軌跡E的方程.……………………4分

              (2)當(dāng)時(shí),軌跡為橢圓,方程為①…………5分

              設(shè)直線PD的方程為

              代入①,并整理,得

                 ②

              由題意,必有,故方程②有兩上不等實(shí)根.

              設(shè)點(diǎn)

              由②知,………………7分

              直線QF的方程為

              當(dāng)時(shí),令,

              代入

              整理得,

              再將代入,

              計(jì)算,得x=1,即直線QF過定點(diǎn)(1,0)

              當(dāng)k=0時(shí),(1,0)點(diǎn)……………………12分

              22.(本小題滿分14分)

              解:(1)

              由題知,即a-1=0,∴a=1.……………………………2分

              x≥0,∴≥0,≥0,

              又∵>0,∴x≥0時(shí),≥0,

              上是增函數(shù).……………………4分

              (Ⅱ)由(Ⅰ)知

              下面用數(shù)學(xué)歸納法證明>0.

              ①當(dāng)n=1時(shí),=1>0成立;

              ②假設(shè)當(dāng)時(shí),>0,

              上是增函數(shù),

              >0成立,

              綜上當(dāng)時(shí),>0.……………………………………6分

              >0,1+>1,∴>0,

              >0,∴,…………………………………8分

              =1,∴≤1,綜上,0<≤1.……………………………9分

              (3)∵0<≤1,

              ,

              ,

              ,

              >0,………………………………………11分

              =??……

                =n.……………………………12分

              ∴Sn++…+

              +()2+…+()n

              ==1.

              ∴Sn<1.………………………………………………………………14分

               

               

               


              同步練習(xí)冊答案
            1. <rt id="6hmjc"><mark id="6hmjc"></mark></rt>