16.給出下列結(jié)論: 查看更多

 

題目列表(包括答案和解析)

給出下列結(jié)論:
①當(dāng)a<0時,(a2)
3
2
=a3;
nan
=|a|(n>1,n∈N?,n為偶數(shù));
③函數(shù)f(x)=(x-2)
1
2
-(3x-7)0的定義域是{x|x≥2且x≠{x|x≥2且x≠
7
3
}

④若2x=16,3y=
1
27
,則x+y=7.
其中正確的是( 。
A、①②B、②③C、③④D、②④

查看答案和解析>>

6、給出下列結(jié)論:
1命題“若¬p,則q或r”的否命題是“若¬p,則¬q且¬r”;
②命題“若¬p,則q”的逆否命題是“若p,則¬q”;
③命題“?n∈N*,n2+3n能被10整除”的否命題是“?n∈N*,n2+3n不能被10整除”;
④命題“?x,x2-2x+3>0”的否命題是“?x,x2-2x+3<0”.
其中正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

給出下列結(jié)論:
①命題“?x∈R,sinx≤1”的否定是“?p:?x∈R,sinx>1”;
②命題“所有正方形都是平行四邊形”的否定是“所有正方形都不是平行四邊形”;
③命題“A1,A2是互斥事件”是命題“A1,A2是對立事件”的必要不充分條件;
④若a,b是實(shí)數(shù),則“a>0且b>0”是“a+b>0且ab>0”的充分不必要條件.
其中正確結(jié)論的是
①③
①③

查看答案和解析>>

給出下列結(jié)論:
(1)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,r越大,模型的擬合效果越好;
(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,正確的有( 。﹤.

查看答案和解析>>

給出下列結(jié)論:
①當(dāng)x≥2時,x+
1
x-1
的最小值是3;
②當(dāng)0<x≤2時,2x+2-x存在最大值;
③若m∈(0,1],則函數(shù)y=m+
3
m
的最小值為2
3

④當(dāng)x>1時,lgx+
1
lgx
≥2.
其中一定成立的結(jié)論序號是
①②④
①②④
(把成立的序號都填上).

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點(diǎn)O,

<noscript id="krqge"><th id="krqge"></th></noscript>

∴PO⊥AC,

又∵面PAC⊥面ABC,PO面PAC,

∴PO⊥面ABC,……………………2分

連結(jié)OD,則OD//BC,

∴DO⊥AC,

由三垂線定理知AC⊥PD.……………………4分

(2)連接OB,過E作EF⊥OB于F,

又∵面POB⊥面ABC,

∴EF⊥面ABC,

過F作FG⊥AC,連接EG,

由三垂線定理知EG⊥AC,

∴∠EGF即為二面角E―AC―B的平面角…………6分

……………………9分

(3)由題意知

.…………………………12分

20.(本小題滿分12分)

解:(1)設(shè)“生產(chǎn)一臺儀器合格”為事件A,則

……………………2分

(2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

所以的分布列為:

3

2

1

0

P

 

的數(shù)學(xué)期望

…………9分

(3)該廠每生產(chǎn)一件儀器合格率為,

∴每臺期望盈利為(萬元)

∴該廠每月期望盈利額為萬元……………………12分

21.(本小題滿分12分)

解:(1)設(shè)

,

…………………………3分

,這就是軌跡E的方程.……………………4分

(2)當(dāng)時,軌跡為橢圓,方程為①…………5分

設(shè)直線PD的方程為

代入①,并整理,得

   ②

由題意,必有,故方程②有兩上不等實(shí)根.

設(shè)點(diǎn)

由②知,………………7分

直線QF的方程為

當(dāng)時,令,

代入

整理得,

再將代入,

計算,得x=1,即直線QF過定點(diǎn)(1,0)

當(dāng)k=0時,(1,0)點(diǎn)……………………12分

22.(本小題滿分14分)

解:(1)

由題知,即a-1=0,∴a=1.……………………………2分

x≥0,∴≥0,≥0,

又∵>0,∴x≥0時,≥0,

上是增函數(shù).……………………4分

(Ⅱ)由(Ⅰ)知

下面用數(shù)學(xué)歸納法證明>0.

①當(dāng)n=1時,=1>0成立;

②假設(shè)當(dāng)時,>0,

上是增函數(shù),

>0成立,

綜上當(dāng)時,>0.……………………………………6分

>0,1+>1,∴>0,

>0,∴,…………………………………8分

=1,∴≤1,綜上,0<≤1.……………………………9分

(3)∵0<≤1,

,

,

,

>0,………………………………………11分

=??……

  =n.……………………………12分

∴Sn++…+

+()2+…+()n

==1.

∴Sn<1.………………………………………………………………14分

 

 

 


同步練習(xí)冊答案