樣方法抽樣.若從月收入[3000.3500(元)段中抽取了30人.則在為20000人中共抽取的人數(shù)為 A.200 B.100 C.20000 D.40 查看更多

 

題目列表(包括答案和解析)

一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了20000人,并根據(jù)所得數(shù)據(jù)畫出了樣本頻率分布直方圖.為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人.則在這20000人中共抽取的人數(shù)為( 。
A.200B.100C.20000D.40
精英家教網(wǎng)

查看答案和解析>>

一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了20000人,并根據(jù)所得數(shù)據(jù)畫出了樣本頻率分布直方圖.為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人.則在這20000人中共抽取的人數(shù)為( )

A.200
B.100
C.20000
D.40

查看答案和解析>>

一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查20000人,并根據(jù)所得數(shù)據(jù)畫出了樣本頻率分布直方圖,為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人,則在這20000人中共抽取的人數(shù)為
[     ]
A.200
B.100
C.20000
D.40

查看答案和解析>>

為征求個(gè)人所得稅修改建議,某機(jī)構(gòu)對(duì)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的頻率;
(II)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,設(shè)月收入在[3500,4000)的這段應(yīng)抽人數(shù)為m,求m的值.
(III)若從(II)中被抽取的m人中再選派兩人參加一項(xiàng)慈善活動(dòng),求其中的甲、乙兩人至少有一個(gè)被選中的概率.

查看答案和解析>>

為征求個(gè)人所得稅修改建議,某機(jī)構(gòu)對(duì)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的頻率;
(II)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,設(shè)月收入在[3500,4000)的這段應(yīng)抽人數(shù)為m,求m的值.
(III)若從(II)中被抽取的m人中再選派兩人參加一項(xiàng)慈善活動(dòng),求其中的甲、乙兩人至少有一個(gè)被選中的概率.
精英家教網(wǎng)

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個(gè)單位,得到函數(shù)的圖象.

,…………………………8分

對(duì)稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點(diǎn)O,

  • <dfn id="xmjxo"></dfn>

        <li id="xmjxo"></li>

          ∴PO⊥AC,

          又∵面PAC⊥面ABC,PO面PAC,

          ∴PO⊥面ABC,……………………2分

          連結(jié)OD,則OD//BC,

          ∴DO⊥AC,

          由三垂線定理知AC⊥PD.……………………4分

          (2)連接OB,過E作EF⊥OB于F,

          又∵面POB⊥面ABC,

          ∴EF⊥面ABC,

          過F作FG⊥AC,連接EG,

          由三垂線定理知EG⊥AC,

          ∴∠EGF即為二面角E―AC―B的平面角…………6分

          ……………………9分

          (3)由題意知

          .…………………………12分

          20.(本小題滿分12分)

          解:(1)設(shè)“生產(chǎn)一臺(tái)儀器合格”為事件A,則

          ……………………2分

          (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

          所以的分布列為:

          3

          2

          1

          0

          P

           

          的數(shù)學(xué)期望

          …………9分

          (3)該廠每生產(chǎn)一件儀器合格率為,

          ∴每臺(tái)期望盈利為(萬(wàn)元)

          ∴該廠每月期望盈利額為萬(wàn)元……………………12分

          21.(本小題滿分12分)

          解:(1)設(shè)

          ,

          ,

          …………………………3分

          ,這就是軌跡E的方程.……………………4分

          (2)當(dāng)時(shí),軌跡為橢圓,方程為①…………5分

          設(shè)直線PD的方程為

          代入①,并整理,得

             ②

          由題意,必有,故方程②有兩上不等實(shí)根.

          設(shè)點(diǎn)

          由②知,………………7分

          直線QF的方程為

          當(dāng)時(shí),令,

          代入

          整理得,

          再將代入,

          計(jì)算,得x=1,即直線QF過定點(diǎn)(1,0)

          當(dāng)k=0時(shí),(1,0)點(diǎn)……………………12分

          22.(本小題滿分14分)

          解:(1)

          由題知,即a-1=0,∴a=1.……………………………2分

          x≥0,∴≥0,≥0,

          又∵>0,∴x≥0時(shí),≥0,

          上是增函數(shù).……………………4分

          (Ⅱ)由(Ⅰ)知

          下面用數(shù)學(xué)歸納法證明>0.

          ①當(dāng)n=1時(shí),=1>0成立;

          ②假設(shè)當(dāng)時(shí),>0,

          上是增函數(shù),

          >0成立,

          綜上當(dāng)時(shí),>0.……………………………………6分

          >0,1+>1,∴>0,

          >0,∴,…………………………………8分

          =1,∴≤1,綜上,0<≤1.……………………………9分

          (3)∵0<≤1,

          ,

          ,

          ,

          >0,………………………………………11分

          =??……

            =n.……………………………12分

          ∴Sn++…+

          +()2+…+()n

          ==1.

          ∴Sn<1.………………………………………………………………14分

           

           

           


          同步練習(xí)冊(cè)答案