22.解:(Ⅰ)由在函數(shù)的圖象上 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則。

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點(diǎn)A(0,1),且在點(diǎn)處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點(diǎn)A(0,1),且在點(diǎn)處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點(diǎn)A(0,1),且在點(diǎn)處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(。┳C明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點(diǎn)A(0,1),且在點(diǎn)處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時(shí),函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫出一個(gè)“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案