12.雙曲線的兩個(gè)焦點(diǎn)為F1.F2.若P為其上一點(diǎn).且∠F1PF2的平分線交F1F2于點(diǎn)M.|F1M|=2|MF2|.則雙曲線離心率的取值范圍為 查看更多

 

題目列表(包括答案和解析)

雙曲線的兩個(gè)焦點(diǎn)為F1、F2,若P為其上一點(diǎn),且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為

[     ]

A.(1,3)
B.[3,+∞)
C.(3,+∞)
D.(1,3]

查看答案和解析>>

雙曲線的兩個(gè)焦點(diǎn)為F1、F2,若P為其上一點(diǎn),且|PF1|=3|PF2|,則雙曲線離心率的取值范圍為_(kāi)_______.

查看答案和解析>>

雙曲線的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為   

查看答案和解析>>

雙曲線的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為   

查看答案和解析>>

雙曲線的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為   

查看答案和解析>>

 

一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設(shè)“通過(guò)第一關(guān)”為事件A1,“補(bǔ)過(guò)且通過(guò)第一關(guān)”為事件A2,“通過(guò)第二關(guān)”為事件B1,“補(bǔ)過(guò)且通過(guò)第二關(guān)”為事件B2。             (2分)

   (1)不需要補(bǔ)過(guò)就可獲得獎(jiǎng)品的事件為A=A1?B1,又A1與B1相互獨(dú)立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補(bǔ)過(guò)就可獲得獎(jiǎng)品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,可得

       

19.解法:1:(1)

   (2)過(guò)E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

由Rt△EFC∽

解法2:(1)

   (2)設(shè)平面PCD的法向量為

        則

           解得   

AC的法向量取為

 角A―PC―D的大小為

20.(1)由已知得    

  是以a2為首項(xiàng),以

    (6分)

   (2)證明:

   

21:解(1)由線方程x+2y+10-6ln2=0知,

    直線斜率為

  

    所以   解得a=4,b=3。    (6分)

   (2)由(1)得

22.解:(1)設(shè)直線l的方程為

因?yàn)橹本l與橢圓交點(diǎn)在y軸右側(cè),

所以  解得2

l直線y截距的取值范圍為。          (4分)

   (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時(shí),

設(shè)AB所在直線方程為

解方程組           得

所以

設(shè)

所以

因?yàn)?i>l是AB的垂直平分線,所以直線l的方程為

 

因此

 又

   (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

綜上所述,M的軌跡方程為(λ≠0)。  (9分)

②當(dāng)k存在且k≠0時(shí),由(1)得

  解得

所以

解法:(1)由于

當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

此時(shí),

 

當(dāng)

當(dāng)k不存在時(shí),

綜上所述,                      (14分)

解法(2):

因?yàn)?sub>

當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

此時(shí)

當(dāng)

當(dāng)k不存在時(shí),

綜上所述,。

 

 

 

 


同步練習(xí)冊(cè)答案