9.如圖3所示的四條曲線分別是四個(gè)反比例函數(shù)圖象的一個(gè)分支.其中是反比例函數(shù)圖象的一個(gè)分支是 查看更多

 

題目列表(包括答案和解析)

如圖所示的四條曲線分別是四個(gè)反比例函數(shù)圖象的一個(gè)分支,其中是反比例函數(shù)y=
4
x
圖象的一個(gè)分支是( 。精英家教網(wǎng)
A、①B、②C、③D、④

查看答案和解析>>

如圖所示的四條曲線分別是四個(gè)反比例函數(shù)圖象的一個(gè)分支,其中是反比例函數(shù)y=
4
x
圖象的一個(gè)分支是( 。
精英家教網(wǎng)
A.①B.②C.③D.④

查看答案和解析>>

如圖所示的四條曲線分別是四個(gè)反比例函數(shù)圖象的一個(gè)分支,其中是反比例函數(shù)y=數(shù)學(xué)公式圖象的一個(gè)分支是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

如圖所示的四條曲線分別是四個(gè)反比例函數(shù)圖象的一個(gè)分支,其中是反比例函數(shù)圖象的一個(gè)分支是
[     ]
A.①
B.②
C.③
D.④

查看答案和解析>>

某地由于引入一種植物,對(duì)該地區(qū)生物多樣性造成了一定影響。


科研工作者對(duì)此進(jìn)行了多項(xiàng)研究。請(qǐng)分析回答下列問題:    
(1)某樣方內(nèi)該植物的分布如右圖所示,則此樣方內(nèi)該植物的
數(shù)量應(yīng)記為__________株。
(2)用樣方法對(duì)該植物和本地原有四種植物的種群密度進(jìn)行調(diào)查,結(jié)果如下表(單位:株/m2)。請(qǐng)?jiān)谙鄳?yīng)的坐標(biāo)圖中繪出該
引入植物的種群密度變化曲線(在曲線上用字母標(biāo)注引入植物)。

(3)引入植物造成的后果稱為生物入侵,主要的兩個(gè)原因是______________。
(4)某研究小組為了進(jìn)一步研究該入侵植物,把
該植物和一種本地植物在一適宜地塊內(nèi)混
合種植,并繪制出兩個(gè)種群的增長(zhǎng)速率曲線
(如右圖)。下列相關(guān)敘述中不正確的是
____________.       
A.乙為該入侵植物,甲的數(shù)量從t3開始減少
B.t1~t3時(shí)間內(nèi),甲種群的增長(zhǎng)曲線呈“S”
C.t2、t4時(shí),甲、乙的數(shù)量分別達(dá)到最大
D.影響乙種群在t4后變化的主要因素是生存空間和資源等
(5)研究小組利用該植物又進(jìn)行了種植密度與產(chǎn)量關(guān)系的研究。在實(shí)驗(yàn)田中劃出5塊面積和土壤肥力等條件均相同的區(qū)域,分別種植數(shù)量不等、分布均勻的該植物。待成熟后分別統(tǒng)計(jì)平均單株莢果數(shù)量、每個(gè)莢果中的種子數(shù),結(jié)果如下表。

結(jié)果反映的規(guī)律之一是:平均單株結(jié)豆莢數(shù)____________;結(jié)果反映的另一規(guī)律是:平均單莢中種子數(shù)量___________。比較不同區(qū)域收獲種子的總量,說(shuō)明要獲得農(nóng)作物高產(chǎn)應(yīng)做到合理密植。

查看答案和解析>>

一、選擇題  BDACA  BCBCD

二、填空題

11.4      12. 2      13. 答案不唯一(如:y=x+1,y=x-3…等等.)     14. 107

15.      16. 35     17. 10      18. 18

三、解答題

19.由(1)與(2)組成的代數(shù)的和(選擇其他組合可參照本題標(biāo)準(zhǔn)給分).

+                                …………………………(1分)

                                …………………………(4分)

                                     …………………………(6分)

                                …………………………(8分)

                                      …………………………(10分)

注: 代數(shù)式(1)與(3)的和為;代數(shù)式(2)與(3)的和為.

20.(1)畫圖正確.                           ………………………………(3分)

(2)316, 165, 38.6(或38.4), 139, 13.6(或13.4)    …………………(8分)

21.設(shè)該公司招聘軟件推銷人員為x人,軟件設(shè)計(jì)人員為y人,      ………(1分)

依題意,得                ……………………(6分)

        解這個(gè)方程組,得                     …………………………(9分)

        答:該公司招聘軟件推銷人員為50人,軟件設(shè)計(jì)人員為70人.    ……(10分)

       (注:其他解法參照上述標(biāo)準(zhǔn)給分.)

22.所畫的兩個(gè)圖案中,有一個(gè)圖案只是軸對(duì)稱(或只是中心對(duì)稱)的給4分,另一個(gè)圖案既是軸對(duì)稱圖形又是中心對(duì)稱圖形的給6分.答案不唯一,以下設(shè)計(jì)圖案僅供參考.

 

 

 

 

 

 

 

 

 

 

23.(1)∵ 四邊形ABCD是正方形,BD是對(duì)角線,且MN∥DC,

∴ 四邊形AMNB和四邊形MNCD都是矩形,          

△MED和△NBE都是等腰直角三角形.      

             ∴ ∠AME=∠ENF=90°,AM=BN=NE.        …………………………(3分)

∴ ∠EFN+∠FEN=90°.                  …………………………(4分)

又∵ EF⊥AE,

∴ ∠AEM+∠FEN=90°,                 …………………………(5分)

∴ ∠EFN=∠AEM ,                     …………………………(6分)

∴ △AME≌△ENF.                      …………………………(7分)

(2)四邊形AFNM的面積沒有發(fā)生變化.         …………………………(8分)

(?)當(dāng)點(diǎn)E運(yùn)動(dòng)到BD的中點(diǎn)時(shí),

四邊形AFNM是矩形,S四邊形AFNM=.           ………………(9分)

(?)當(dāng)點(diǎn)E不在BD的中點(diǎn)時(shí),點(diǎn)E在運(yùn)動(dòng)(與點(diǎn)B、D不重合)的過(guò)程中,四邊形AFNM是直角梯形. 

由(1)知,△AME≌△ENF.

同理,圖12.2中,△AME≌△ENF.

∴ ME=FN,AM=EN.  

∴ AM+FN=MN=DC=1.                    …………………………(11分)

這時(shí) S四邊形AFNM=(AM+FN)?DC=?1?1=

綜合(?)、(?)可知四邊形AFNM的面積是一個(gè)定值. …………(12分)

24.(1)∵ 拋物線經(jīng)過(guò)O(0,0),A(4,0),B(3,),

 .解得  .    ………(2分)

∴ 所求拋物線的函數(shù)關(guān)系式為.    ………………(3分)

(注:用其它方法求拋物線的函數(shù)關(guān)系式參照以上標(biāo)準(zhǔn)給分.)

(2)① 過(guò)點(diǎn)B作BE⊥軸于E,則BE=,AE=1,AB=2. 

由tan∠BAE=,得∠BAE =60°.              …………(4分)

      (?)當(dāng)點(diǎn)Q在線段AB上運(yùn)動(dòng),即0<≤2時(shí),QA=t,PA=4-.

過(guò)點(diǎn)Q作QF⊥軸于F,則QF=,

            ∴ S=PA?QF

.   ……(6分)

      (?)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng),即2≤<4時(shí),Q點(diǎn)的縱坐標(biāo)為,PA=4-.

這時(shí),S=.     ……………………(8分)

②(?)當(dāng)0<≤2時(shí),.

           ∵ ,∴ 當(dāng)=2時(shí),S有最大值,最大值S=. ……(9分)

(?)當(dāng)2≤<4時(shí),

           ∵ , ∴ S隨著的增大而減小.

∴ 當(dāng)=2時(shí),S有最大值,最大值.

          綜合(?)(?),當(dāng)=2時(shí),S有最大值,最大值為. ……(10分)

△PQA是等邊三角形.                …………………………(11分)

③ 存在.                                 …………………………(12分)

當(dāng)點(diǎn)Q在線段AB上運(yùn)動(dòng)時(shí),要使得△PQA是直角三角形,必須使得∠PQA =90°,這時(shí)PA=2QA,即4-=2,∴ .

∴ P、Q兩點(diǎn)的坐標(biāo)分別為P1(,0),Q1(,).        ……(13分)

當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),Q、P兩點(diǎn)的橫坐標(biāo)分別為5-,要使得△PQA是直角三角形,則必須5-=,∴

∴ P、Q兩點(diǎn)的坐標(biāo)分別為P2(,0),Q2(,).  ………………(14分)

(注:用其它方法求解參照以上標(biāo)準(zhǔn)給分.)

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案