(1)當時..此時在上是增函數. 查看更多

 

題目列表(包括答案和解析)

設函數,
(Ⅰ)若f(x)在x=1處有極值,求a;
(Ⅱ)若f(x)在[2,3]上為增函數,求a的取值范圍.
(Ⅲ)當a=-1時,函數f(x)圖象上是否存在兩點,使得過此兩點處的切線互相垂直?試證明你的結論.

查看答案和解析>>

設函數f(x)=
12
ax2+2ax-3lnx (a∈R)

(Ⅰ)若f(x)在x=1處有極值,求a;
(Ⅱ)若f(x)在[2,3]上為增函數,求a的取值范圍.
(Ⅲ)當a=-1時,函數f(x)圖象上是否存在兩點,使得過此兩點處的切線互相垂直?試證明你的結論.

查看答案和解析>>

探究函數,x∈(0,+∞)的最小值,并確定相應的x的值,列表如下:
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若函數(x>0)在區(qū)間(0,2)上遞減,則在________上遞增;
(2)當x=________時,(x>0)的最小值為_________;
(3)試用定義證明(x>0)在區(qū)間(0,2)上遞減;
(4)函數(x<0)有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:第(1)(2)兩題的結果直接填寫在橫線上;第(4)題直接回答,不需證明。

查看答案和解析>>

已知函數,其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數的單調性;

  (3)若函數上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數上單調遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值,

時由(2)可知處取得最小值,不符合題意.

綜上,函數上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

探究函數f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減,函數f(x)=x+
4
x
(x>0)
在區(qū)間
 
上遞增;
(2)函數f(x)=x+
4
x
(x>0)
,當x=
 
時,y最小=
 
;
(3)函數f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>


同步練習冊答案