題目列表(包括答案和解析)
在中,滿足,是邊上的一點.
(Ⅰ)若,求向量與向量夾角的正弦值;
(Ⅱ)若,=m (m為正常數(shù)) 且是邊上的三等分點.,求值;
(Ⅲ)若且求的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則
令=,得,又,則為所求
第二問因為,=m所以,
(1)當(dāng)時,則=
(2)當(dāng)時,則=
第三問中,解:設(shè),因為,;
所以即于是得
從而
運用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量的夾角為,則
令=,得,又,則為所求……………2分
(Ⅱ)解:因為,=m所以,
(1)當(dāng)時,則=;-2分
(2)當(dāng)時,則=;--2分
(Ⅲ)解:設(shè),因為,;
所以即于是得
從而---2分
==
=…………………………………2分
令,則,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時,
|
在中,內(nèi)角所對的邊分別為,給出下列結(jié)論:
①若,則;
②若,則為等邊三角形;
③必存在,使成立;
④若,則必有兩解.
其中,結(jié)論正確的編號為 (寫出所有正確結(jié)論的編號).
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com