使為定值?若存在.求出這個定點的坐標(biāo),若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓數(shù)學(xué)公式
(1)若橢圓數(shù)學(xué)公式,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”數(shù)學(xué)公式數(shù)學(xué)公式分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

說明:

    一、本解答指出了每題要考察的主要知識和能力,并給出了一種或幾種解法供參考,如

果考生的解法與本解法不同,可根據(jù)試題的主要考察內(nèi)容比照評分標(biāo)準(zhǔn)指定相應(yīng)的評分細(xì)

則。

    二、對計算題,當(dāng)考生的解答在某一部分解答未改變該題的內(nèi)容和難度,可視影響的程

度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答

有較嚴(yán)重的錯誤,就不再給分。

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分。

一、選擇題:本涂考察基礎(chǔ)知識和基本運算,每小題5分,滿分50分。

1.A   2.A   3.B   4.C   5.B   6.B   7.C   8.D   9.C   10.D

二、填空題:本題考察基礎(chǔ)知識和基本運算,每小題4分,滿分20分。

11.     12.60      13.-540    14.    15.820

三、解答題:本大題共6小題,滿分80分,解答須寫出文字說明、證明過程和演算步驟。

16.本小題主要考察概率統(tǒng)計的基礎(chǔ)知識,運用數(shù)學(xué)知識解決問題的能力,以及推理與運算

能力。滿分13分。

(I)、同奇的取法有種,同偶的取法有?????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????? 5分

(Ⅱ),

??????????????????????? 10分

其分布列為

1

2

3

4

5

????????????????????????????????????? 13分

17.本小題主要考察直線與平面的位置關(guān)系,二面角的大小,體積的計算等知識,考察空間

想象能力、邏輯思維能力和運算能力,滿分13分。

(I)連結(jié)BD,由已知得BD=2,

在正三角形BCD中,BE=EC,

,又,

…………………………2分

平面,

,…………………………3分

平面PAD!4分

(Ⅱ)

,?????????????????????????????????????????????????????????????????????????????????? 5分

??????????????????????????????????? 8分

(Ⅲ)證法一:如圖建立空間直角坐標(biāo)系

則由(I)知平面的一個法向量為

,

設(shè)平面PBC的法向量為,

???????????????????????????????????????????????????????????????????? 11分

?????????????????????????????????????????????????? 12分

平面PAD與平面PBC所成的銳二面角大小的余弦值為??????????????????????? 13分

證法二:由(I)知平面平面,

平面平面???????????????????????????????????????????????????????????????????? 9分

平面平面

平面平面???????????????????????????????????????????????????????????????????? 10分

就是平面與平面所成二面角的平面角???????????????????????????? 11分

中,

?????????????????????????????????????????????????????????????????? 13分

 

18.本小題主要考察兩角和差公式,二倍角公式,同角三角函數(shù)關(guān)系,解斜三角形的基本知

識以及推理能力、運算能力和應(yīng)用能力,滿分13分。

解:在中,

????????????????????????????????????????????????????????????????? 2分

化簡得:

        ???????????????????????????????????????????????????????????? 4分

所以

????????????????????????? 6分

???????????????????? 8分

???????????????????????????????????????????????????????? 10分

所以當(dāng)時,=???????????????????????????????????? 12分

答:當(dāng)時,所建造的三角形露天活動室的面積最大。?????????????????????????? 13分

 

19.本題主要考查直線、橢圓、向量等基礎(chǔ)知識,考查曲線方程的求法以及研究曲線的定性

定量的基本方法,考查運算能力、探究能力和綜合解題能力,滿分13分。

解:(I)設(shè)橢圓E的方程為

由已知得:

???????????????????????????????????????????????????????????????????????????????? 2分

橢圓E的方程為??????????????????????????????????????????????????????????????? 3分

(Ⅱ)法一:假設(shè)存在符合條件的點,又設(shè),則:

????????????????????????????????????????????????? 5分

 

①當(dāng)直線的斜率存在時,設(shè)直線的方程為:,則

???????????????????????????????????????????????????????? 7分

所以

            ????????????????????????????????????????????? 9分

對于任意的值,為定值,

所以,得,

所以;??????????????????????????????????????????????????????????? 11分

②當(dāng)直線的斜率不存在時,直線

綜上述①②知,符合條件的點存在,起坐標(biāo)為。????????????????????????????? 13分

法二:假設(shè)存在符合條件的點,又設(shè)則:

         =????????????????????????????????????????????????? 5分

①當(dāng)直線的斜率不為0時,設(shè)直線的方程為,

?????????????????????????????????????????????????????????? 7分

           ????????????????????????????????????????????????? 9分

設(shè)

?????????????????????????????????????????????????????????????????????????????????????? 11分

②當(dāng)直線的斜率為0時,直線,由得:

綜上述①②知,符合條件的點存在,其坐標(biāo)為???????????????????????????????? 13分

20.本題考查函數(shù)、導(dǎo)數(shù)、數(shù)列的基本知識及其應(yīng)用等知識,考查化歸的數(shù)學(xué)思想方法以及

推理和運算能力。考查運用數(shù)學(xué)知識分析和解決問題的能力,滿分14分。

解:(I)

             ?????????????????????????????????????????? 2分

由已知得:

????????????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)方法一:由(I)得

上為單調(diào)增函數(shù),則恒成立,

恒成立。

恒成立,????????????????????????????????????????????????????????? 7分

??????????????????????????????????????????????????????????????????????????????????????? 9

方法二:同方法一。

當(dāng),單調(diào)遞增,

??????????????????????????????????????????????????????????????????????????????????????? 9分

(Ⅲ)方法一:

          ?????????????????????????????????????????????????????? 10分

當(dāng)時,,

當(dāng)時,,??????????????????????????????????????????????? 12分

根據(jù)題意可知??????????????????????????????????????? 14分

方法二:同方法一,

???????????????????????????????????????? 10分

當(dāng)時,

當(dāng)時,???????????????????????????????????????????????????? 12分

根據(jù)題意可知??????????????????????????????????????? 14分

方法三:設(shè)是數(shù)列中的最大項,則

??????????????????????????? 12分

為最大項,

所以?????????????????????????????????????????????????? 14分

以下同上

 

21.本題考查,本題滿分14分

(I)本題主要考查矩陣與變換、曲線在矩陣變換下的曲線的方程,考查運算求解能力及化

歸與轉(zhuǎn)化思想,滿分7分。

解:

????????????????????????????????????????????????????????????????????????????????? 2分

,即???????????????????????????????????????????????????????? 4分

????????????????????????????????????????????????????????????????????????????????????? 5分

曲線的方程為??????????????????????????????????????????????????????????? 7分

(Ⅱ)本題主要考查直線和圓的極坐標(biāo)方程,考查運算求解能力及化歸與轉(zhuǎn)化思想,滿分7

分。

解:

???????????????????????????????????????????????????????????????????? 3分

圓心的坐標(biāo)為??????????????????????????????????????????????????????????????????????? 4分

,即???????????????????????????????????????????????????????????????? 5分

圓心到直線的距離為1?????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)本題主要考查利用常見不等式求條件最值,考查化歸與轉(zhuǎn)化思想,滿分7分

解:

????????????????????????????????????????? 3分

?????????????????????????????????????????????????????????????????? 5分

當(dāng)且僅當(dāng)時取到“=”號,

當(dāng)的最小值為??????????????????????????????? 7分

 

 


同步練習(xí)冊答案