C1在點M處的切線斜率為 查看更多

 

題目列表(包括答案和解析)

定義,

   (1)令函數(shù)的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O作曲線C1的切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值。

   (2)當

   (3)令函數(shù)的圖象為曲線C2,若存在實數(shù)b使得曲線C2處有斜率為-8的切線,求實數(shù)a的取值范圍。

查看答案和解析>>

(本小題滿分14分)定義,

   (1)令函數(shù)的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O作曲線C1的切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值。

   (2)當

   (3)令函數(shù)的圖象為曲線C2,若存在實數(shù)b使得曲線C2處有斜率為-8的切線,求實數(shù)a的取值范圍。

查看答案和解析>>

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
(1)當MA⊥MB時,求直線l的方程;
(2)試問在y軸上是否存在兩個定點T1,T2,當直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點坐標;若不存在,請說明理由.

查看答案和解析>>

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O作曲線C1的切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x);
(3)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O作曲線C1的切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x);
(3)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數(shù)b使得曲線C2在x(-4<x<-1)處有斜率為-8的切線,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習冊答案