⊙C圓心坐標 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系xoy中,以C(1,-2)為圓心的圓與直線x+y+3
2
+1=0
相切.   (I)求圓C的方程;
(II)是否存在斜率為1的直線l,使得以l被圓C截得的弦AB為直徑的圓過原點,若存在,求出此直線方程,若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標系xoy中,設點F(
1
2
,0)
,直線l:x=-
1
2
,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
( I) 求動點Q的軌跡的方程C;
( II) 設圓M過A(1,0),且圓心M在曲線C上,設圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當M運動時弦長|TS|是否為定值?請說明理由.

查看答案和解析>>

(2013•綿陽二模)動點M(x,y)與定點F(l,0)的距離和它到直線l:x=4的距離之比是常數(shù)
1
2
,O為坐標原點.
(I )求動點M的軌跡E的方程,并說明軌跡E是什么圖形?
(II) 已知圓C的圓心在原點,半徑長為
2
是否存在圓C的切線m,使得m與圓C相切于點P,與軌跡E交于A,B兩點,且使等式
AP
PB
=
OP
2
成立?若存在,求 出m的方程;若不存在,請說明理由.

查看答案和解析>>

(2012•淄博一模)在平面直角坐標系內已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標保持不變,縱坐標擴大到原來的
2
倍后得到點Q(x,
2
y)
,且滿足
AQ
BQ
=1

(I)求動點P所在曲線C的方程;
(II)過點B作斜率為-
2
2
的直線l交曲線C于M、N兩點,且
OM
+
ON
+
OH
=
0
,又點H關于原點O的對稱點為點G,試問M、G、N、H四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.

查看答案和解析>>

(2012•鄭州二模)已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與離心率e>
1
2
的橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的其中一個公共點為A(3,l),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點.
(I)求圓C的標準方程;
(II)若點P的坐標為(4,4),試探究直線PF1與圓C能否相切?若能,設直線PF1與橢圓E相交于A,B兩點,求△ABF2的面積;若不能,請說明理由.

查看答案和解析>>


同步練習冊答案