13.已知P(x,y)滿足.則x-y最小值是 . 查看更多

 

題目列表(包括答案和解析)

已知P(x,y)、Q(a,b),且0≤y≤x≤1.如果僅在x=y=1時,|PQ|取得最小值,則O的坐標(biāo)應(yīng)滿足的條件是( 。
A、
a≥1
b≥1
B、1≤a≤b
C、
a+b≥2
b≥a
D、
a+b≥2
b≥1

查看答案和解析>>

已知P(x,y)滿足
x+y-3≥0
y≤4
x≤1
,Q是x軸上一個動點,定點R(2,3),則|PQ|+|QR|可以取到的最小值是
 

查看答案和解析>>

已知P△ABC的邊BC上的任一點,且滿足xyx、y∈R的最小值是________

 

查看答案和解析>>

已知P(x,y)滿足,Q是x軸上一個動點,定點R(2,3),則|PQ|+|QR|可以取到的最小值是   

查看答案和解析>>

已知x、y滿足約束條件,若點P的坐標(biāo)為(,-2),點Q為該區(qū)域內(nèi)一點,則|PQ|長的最小值是 ______.

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

B

C

B

C

D

D

D

C

B

B(文、理)

二、填空題:

13.-1        14.y2=4x(x>0,y>0)       15.      16.    16.(文)

三、解答題:(理科)

17.解:(1)由已知1-(2cos2A-1)=2cos2

     ∴2cos2A+cosA-1=0     cosA=或cosA=-1(舍去)

∴A=60°

(2)S=bcsin60°=bc

由余弦定理cos60°=

∴b2+c2=bc+36

由b2+c2≥2bc    ∴bc≤36

∴S==9,此時b=c故△ABC為等邊三角形

  18.解:(1)設(shè)A(-,0),B(0,b)

      ∴  又=(2,2)

      ∴解得

(2)由x+2>x2-x-6 得-2<x<4

  ,由于x+2>0

  ∴由均值不等式得原式最小值為-3,僅當(dāng)x=-1時

19.解:(1)證明:連AC交BD于O,連EO

    ∵E、O分別是中點,

EO∥PA

∴ EO面EDB  PA∥面EDB

   PA面EDB

(2) ∵△PDC為正△

∴DE⊥PC

 面PDC⊥面ABCD

 BC⊥CD       BC⊥DE

   BC面ABCD

  • EDB⊥面PBC

      DE面DBE

    20.解:(1)x2-4ax+a2≥a在x∈[-1,+∞)恒成立

    ∴x2-4ax+a2-a≥0

    ∴△≤0或

    -≤a≤0或a≤

    (2)g(x)=2x3+3ax2-12a2x+3a2

       g′(x)=6x2+6ax-12a2

             =6(x-a)(x+2a)

    ①當(dāng)a=0時,g′(x) ≥0,g(x)無極值

    ②當(dāng)a>0時,g(x)在x=a時取得極小值,∴0<a<1

    ③當(dāng)a<0時,g(x)在x=-2a時取到極小值,∴0<-2a<1  ∴-<a<0

    故0<a<1或-<a<0

          <form id="eksx4"><legend id="eksx4"></legend></form>

            ①-②得3tan-(2t+3)an-1=0

            ∴,又

            ∴{an}是以1為首項,為公比的等比數(shù)列

            (2)f(t)=

            ∴bn=

            ∴{bn}是以1為首項,為公差的等差數(shù)列

            ∴bn=1+

            (3)原式=b2(b1-b3)+b4(b3-b5)+…b2n(b2n-1+b2n+1)

                   =-(b2+b4+…b2n)

                   =-

          22.解(1)由題意M到(0,)距離與它到y(tǒng)=-距離相等

          ∴動點M軌跡為拋物線,且P=

          ∴y=x2(x>0)

          (2)設(shè)M(x1,x12),N(x2,x22)(x1>0,x2>0,x1≠x2)

            ∴tanθ1=x1,tanθ2=x2(0<θ1, θ2<)

          ①當(dāng)θ≠時,

          直線MN方程:y-x12=(x-x1),其中tanθ=

          :y=(x1+x2)(x+)-1,所以直線過定點(-

          ②當(dāng)θ=時,即x1x2=1時,:y=(x1+x2)x-1,過定點(0,-1)

          文科:17-19同理

          20.(文)(1)x2-4ax+a2≥x解為R

            ∵x2-(4a+1)x+a2≥0

            ∴△=(4a+1)2-4a2≤0

            ∴-

            ∴a的最大值為-

          (2)g(x)=2x3+3ax2-12a2x+3a2

             g′(x)=6x2+6ax-12a2

                   =6(x-a)(x+2a)

          當(dāng)a<0時,g(x)在x=-2a時取到極小值,∴0<-2a<1  ∴-<a<0

          21.同理21(1)(2)

          22.同理

           


          同步練習(xí)冊答案