題目列表(包括答案和解析)
已知函數(shù)的定義域為,值域為.下列關(guān)于函數(shù)的說法:①當(dāng)時,;②點不在函數(shù)的圖象上;③將的圖像補(bǔ)上點(5,0),得到的圖像必定是一條連續(xù)的曲線;④的圖象與坐標(biāo)軸只有一個交點.其中一定正確的說法的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
函數(shù)的定義域為(0,1](為實數(shù)).
⑴當(dāng)時,求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時的值
函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足以下兩個條件:(1)在[m,n]上是單調(diào)函數(shù);(2) 在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有 (填上所有正確的序號)
①=x2(x≥0); ②=ex(x∈R);
③=;④=.
一、選擇題:本大題共有12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項正確的
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
C
D
D
A
B
B
C
B
A
C
二、填空題:本大題共4小題,每小題4分,共16分,把答案填在答題卡的相應(yīng)位置。
13.(1,0) 14. 15.1 16.②③
三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。
17.(本小題滿分12分)
解:(Ⅰ)由
……………………………………4分
又因為
解得…………………………………………5分
………………………………………6分
(Ⅱ)在,
。……………………………………………9分
,
即,
又由(Ⅰ)知
故取得最大值時,為等邊三角形. …………………………12分
18.(本小題滿分12分)
解:(Ⅰ)設(shè)抽取的樣本為名學(xué)生的成績,
則由第一行中可知
;
②處的數(shù)值為;
③處的數(shù)值為…………4分
(Ⅱ)成績在[70,80分的學(xué)生頻率為0.2,成績在[80.90分的學(xué)生頻率為0.32,
所以成績在[70.90分的學(xué)生頻率為0.52,……………………………………6分
由于有900名學(xué)生參加了這次競賽,
所以成績在[70.90分的學(xué)生約為(人)………………8分
(Ⅲ)利用組中值估計平均為
…………12分
19.(本小題滿分12分)
解:(I)由幾何體的三視圖可知,低面ABCD是邊長為4的正方形,
,…………………………………3分
且,
………………6分
(Ⅱ)連,
,
°
°
………………10分
又
……………………………………………………………………12分
20.(本小題滿分12分)
解:(I)10年后新建住房總面積為
!3分
設(shè)每年拆除的舊住房為………………5分
解得,即每年拆除的舊住房面積是…………………………………6分
(Ⅱ)設(shè)第年新建住房面積為,則=
所以當(dāng);…………………………………………9分
當(dāng)
故……………………………………12分
21.(本小題滿分12分)
解:(Ⅰ)由題意可知,可行域是以為頂點的三角形,因為,
故,
為直徑的圓,
故其方程為………………………………………………3分
設(shè)橢圓的方程為,
又.
故橢圓………………………………………5分
(Ⅱ)直線始終與圓相切。
設(shè)。
當(dāng)。
若
;
若
;
即當(dāng)……………………………7分
當(dāng)時,,
。
因此,點Q的坐標(biāo)為。
……………10分
當(dāng),
。
綜上,當(dāng),…………12分
22.(本小題滿分14分)
解:(I)(1),
!1分
處取得極值,
…………………………………………………2分
即
………………………………………4分
(ii)在,
由
,
;
當(dāng);
;
.……………………………………6分
面
,
且
又
,
……………9分
(Ⅱ)當(dāng),
①;
②當(dāng)時,
,
③,
從面得;
綜上得,.………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com