題目列表(包括答案和解析)
已知點P(-3,0),點A在y軸上,點Q在x軸非負半軸上,點M在直線AQ上,滿足·=0,=-.
(1)當點A在y軸上移動時,求動點M的軌跡C的方程;
(2)設(shè)軌跡C的準線為l,焦點為F,過F作直線m交軌跡C于G,H兩點,過點G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點E,O,H(O為坐標原點)是否在同一條直線上?并說明理由.
x2 |
a2 |
y2 |
b2 |
1 |
4 |
1 |
2 |
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
11. 12.4 13.2.442 14. 15.9,15
16.(Ⅰ),∴,
∴,∴
(Ⅱ)
,∴,
∴
17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524
②
所以2號射箭運動員的射箭水平高.
18.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為
(Ⅱ),設(shè)點,則
∴,∵,∴,∴∴的最小值為6.
19.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
(Ⅲ)取EF中點G,EB中點H,連結(jié)DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴∴,
∴又又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小為
20.(Ⅰ)設(shè),,
∴在單調(diào)遞增.
(Ⅱ)當時,,又,,即;
當時,,,由,得或.
的值域為
(Ⅲ)當x=0時,,∴x=0為方程的解.
當x>0時,,∴,∴
當x<0時,,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個交點時k的取值范圍,應(yīng)用導數(shù)畫出的大致圖象,
∴,∴
21.(Ⅰ)當時, ,∴,令 有x=0,
當單調(diào)遞減;當單調(diào)遞增.
∴∴;
(Ⅱ)∵,∴∴
∴為首項是1、公比為的等比數(shù)列. ∴∴;
(Ⅲ)∵,由(1)知,
∴,即證.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com