綜上.當(dāng)時(shí).An<Bn,當(dāng)高考對(duì)這部分知識(shí)的考查主要考查絕對(duì)值的幾何意義.解含參絕對(duì)值不等式的解法.證明不等式的基本方法.會(huì)用數(shù)學(xué)歸納法證明一些簡(jiǎn)單問(wèn)題等.題型仍以填空題或解答題形式出現(xiàn). 查看更多

 

題目列表(包括答案和解析)

(2011•藍(lán)山縣模擬)已知點(diǎn)列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N?)順次為拋物線y=
1
4
x2上的點(diǎn),過(guò)點(diǎn)Bn(n,bn)作拋物線y=
1
4
x2的切線交x軸于點(diǎn)An(an,0),點(diǎn)Cn(cn,0)在x軸上,且點(diǎn)An,Bn,Cn構(gòu)成以點(diǎn)Bn為頂點(diǎn)的等腰三角形.
(1)求數(shù)列{an},{cn}的通項(xiàng)公式;
(2)是否存在n使等腰三角形AnBnCn為直角三角形,若有,請(qǐng)求出n;若沒(méi)有,請(qǐng)說(shuō)明理由.
(3)設(shè)數(shù)列{
1
an•(
3
2
+cn)
}的前n項(xiàng)和為Sn,求證:
2
3
≤Sn
4
3

查看答案和解析>>

(文) {an}中,a1=1,an+1=
12
an+1
,b1=1,(bn,bn+1)在直線x-y+2=0上.求:an,bn

查看答案和解析>>

在xoy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對(duì)每一個(gè)(n∈N+),點(diǎn)Pn(an,bn)在函數(shù)y=2000(
a10
)
x
(0<a<10)的圖象上,且點(diǎn)Pn(an,bn)與點(diǎn)(n,0)和(n+1,0)構(gòu)成一個(gè)以點(diǎn)Pn(an,bn)為頂點(diǎn)的等腰三角形.
(1)求點(diǎn)Pn(an,bn)的縱坐標(biāo)bn關(guān)于n的表達(dá)式;
(2)若對(duì)每一個(gè)自然數(shù)n,以bn,bn+1,bn+2能構(gòu)成一個(gè)三角形,求a的范圍;
(3)設(shè)Bn=b1•b2•b3•…•bn(n∈N+),若a。2)中確定的范圍內(nèi)的最小整數(shù)時(shí),求{Bn}中的最大項(xiàng).

查看答案和解析>>

(2000•上海)在xoy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對(duì)每個(gè)自然數(shù)n,點(diǎn)Pn位于函數(shù)y=2000(
a10
)x
,(0<a<10)的圖象上,且點(diǎn)Pn、點(diǎn)(n,0)與點(diǎn)(n+1,0)構(gòu)成一個(gè)以Pn為頂點(diǎn)的等腰三角形.
(Ⅰ)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式;
(Ⅱ)若對(duì)每個(gè)自然數(shù)n,以bn,bn+1,bn+2為邊長(zhǎng)能構(gòu)成一個(gè)三角形,求a的取值范圍;
(Ⅲ)設(shè)Cn=lg(bn),n∈N*,若a。á颍┲写_定的范圍內(nèi)的最小整數(shù),問(wèn)數(shù)列{Cn}前多少項(xiàng)的和最大?試說(shuō)明理由.(lg2=0.3010,lg7=0.8450)

查看答案和解析>>

(2000•上海)在XOY平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,對(duì)每個(gè)自然數(shù)n,點(diǎn)P,位于函數(shù)y=2000(
a10
)n(0<a<10)
的圖象上,且點(diǎn)Pn,點(diǎn)(n,0)與點(diǎn)(n+1.0)構(gòu)成一個(gè)以Pn為頂點(diǎn)的等腰三角形.
(Ⅰ)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式.
(Ⅱ)若對(duì)每個(gè)自然數(shù)n,以bn,bn+1,bn+2為邊長(zhǎng)能構(gòu)成一個(gè)三角形,求a取值范圍.
(Ⅲ)設(shè)Bn=b1b2…bn(n∈N).,若a取(2)中確定的范圍內(nèi)的最小整數(shù),求數(shù)列{Bn}的最大項(xiàng)的項(xiàng)數(shù).

查看答案和解析>>

1.(共12 分)解:(I)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e ?6ec8aac122bd4f6e

6ec8aac122bd4f6e                                     2分

6ec8aac122bd4f6e                                                 4分

6ec8aac122bd4f6e= 6ec8aac122bd4f6e.                                                     5分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e                               6分             

函數(shù)6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e.                                             7分

當(dāng)且僅當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6eZ)時(shí),函數(shù)6ec8aac122bd4f6e取得最大值為6ec8aac122bd4f6e.

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6eZ),                          9分

6ec8aac122bd4f6e  (6ec8aac122bd4f6eZ).                                   11分

函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間為[6ec8aac122bd4f6e](6ec8aac122bd4f6eZ).                     12

2.解:(Ⅰ) 選手甲答6ec8aac122bd4f6e道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;    ……………1分

選手甲答6ec8aac122bd4f6e道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;…………………………3分

選手甲答5道題進(jìn)入決賽的概率為6ec8aac122bd4f6e;   …………………5分

∴選手甲可進(jìn)入決賽的概率6ec8aac122bd4f6e+6ec8aac122bd4f6e+6ec8aac122bd4f6e6ec8aac122bd4f6e.        …………………7分

   (Ⅱ)依題意,6ec8aac122bd4f6e的可能取值為6ec8aac122bd4f6e.則有6ec8aac122bd4f6e,               

6ec8aac122bd4f6e,       

6ec8aac122bd4f6e, …………………………10分

因此,有

ξ

3

4

5

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.          ……………………………12分

3.(共12分)解法一:

解:(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.-------------2分                 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.         --------3分                                            

6ec8aac122bd4f6e6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e6ec8aac122bd4f6e.            ----------4分

(Ⅱ) 由(Ⅰ)6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e為所求二面角的平面角.         -------6分

又∵6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=4,

6ec8aac122bd4f6e=4 .  ∵6ec8aac122bd4f6e=2 , ∴6ec8aac122bd4f6e=60°. -------8分

即二面角6ec8aac122bd4f6e大小為60°.

(Ⅲ)過(guò)6ec8aac122bd4f6e6ec8aac122bd4f6e于D,連結(jié)6ec8aac122bd4f6e,            

由(Ⅱ)得平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,且平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e內(nèi)的射影.

6ec8aac122bd4f6e. --------10分

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e =6ec8aac122bd4f6e.                       ------------11分                       

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的大小為6ec8aac122bd4f6e.         ----12分               

解法二:解:(Ⅰ)由已知6ec8aac122bd4f6e

6ec8aac122bd4f6e點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系6ec8aac122bd4f6e.                             

6ec8aac122bd4f6e,6ec8aac122bd4f6e.            -------2分  

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e.     

6ec8aac122bd4f6e.       ----------------4分

   (Ⅱ)6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量. -------5分

設(shè)側(cè)面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

   6ec8aac122bd4f6e   6ec8aac122bd4f6e.令6ec8aac122bd4f6e6ec8aac122bd4f6e.

則得平面6ec8aac122bd4f6e的一個(gè)法向量6ec8aac122bd4f6e6ec8aac122bd4f6e.               ---------6分

6ec8aac122bd4f6e.       

即二面角6ec8aac122bd4f6e大小為60°.     ----------8分

(Ⅲ)由(II)可知6ec8aac122bd4f6e6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個(gè)法向量.     --------10分

6ec8aac122bd4f6e, 6ec8aac122bd4f6e6ec8aac122bd4f6e.   -----11分                    

所以直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角為6ec8aac122bd4f6e           ---------12分

4.解:(I)函數(shù)6ec8aac122bd4f6e

    當(dāng)6ec8aac122bd4f6e  …………2分

    當(dāng)x變化時(shí),6ec8aac122bd4f6e的變化情況如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

+

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值

6ec8aac122bd4f6e

    由上表可知,函數(shù)6ec8aac122bd4f6e

    單調(diào)遞增區(qū)間是6ec8aac122bd4f6e

    極小值是6ec8aac122bd4f6e         …………6分

   (II)由6ec8aac122bd4f6e      …………7分

    又函數(shù)6ec8aac122bd4f6e為[1,4]上單調(diào)減函數(shù),

    則6ec8aac122bd4f6e在[1,4]上恒成立,所以不等式6ec8aac122bd4f6e在[1,4]上恒成立.

    即6ec8aac122bd4f6e在[1,4]上恒成立.            …………10分

    又6ec8aac122bd4f6e在[1,4]為減函數(shù),

    所以6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e                   …………12分

5.解:橢圓6ec8aac122bd4f6e的左、右焦點(diǎn)分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e ,         ……2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e  ,      6ec8aac122bd4f6e………3分

解得6ec8aac122bd4f6e,                   

6ec8aac122bd4f6e橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e .                       ………4分

   (Ⅱ)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設(shè)點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e的坐標(biāo)分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e,則6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e

   (1)當(dāng)6ec8aac122bd4f6e時(shí),點(diǎn)6ec8aac122bd4f6e、6ec8aac122bd4f6e關(guān)于原點(diǎn)對(duì)稱,則6ec8aac122bd4f6e

   (2)當(dāng)6ec8aac122bd4f6e時(shí),點(diǎn)6ec8aac122bd4f6e、6ec8aac122bd4f6e不關(guān)于原點(diǎn)對(duì)稱,則6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e       即6ec8aac122bd4f6e

6ec8aac122bd4f6e點(diǎn)6ec8aac122bd4f6e在橢圓上,6ec8aac122bd4f6e6ec8aac122bd4f6e,

化簡(jiǎn),得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e.………………①         ……………7分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e.……………………………②    

將①、②兩式,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合(1)、(2)兩種情況,得實(shí)數(shù)6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e. ………………8分

(Ⅲ)6ec8aac122bd4f6e,點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離6ec8aac122bd4f6e,

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e6ec8aac122bd4f6e

                6ec8aac122bd4f6e.           ………………………… 10分

由①有6ec8aac122bd4f6e,代入上式并化簡(jiǎn),得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e.                    ……………………… 11分

當(dāng)且僅當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e時(shí),等號(hào)成立.

6ec8aac122bd4f6e當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的面積最大,最大值為6ec8aac122bd4f6e. ……………………… 12分

6.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………4分

(2)6ec8aac122bd4f6e的對(duì)稱軸垂直于x軸,且頂點(diǎn)為Pn,

∴設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

=6ec8aac122bd4f6e…………………………8分

(3)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴S6ec8aac122bd4f6e中最大數(shù)a1=-17.…………………………10分

設(shè)6ec8aac122bd4f6e公差為d,則a10=6ec8aac122bd4f6e

由此得6ec8aac122bd4f6e

又∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………12分

本資料來(lái)源于《七彩教育網(wǎng)》http://www.7caiedu.cn

2009屆新課標(biāo)數(shù)學(xué)考點(diǎn)預(yù)測(cè)(26):函數(shù)與方程的思想方法

《2009年新課標(biāo)考試大綱》明確指出“數(shù)學(xué)知識(shí)是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法”。其中數(shù)學(xué)思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結(jié)合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)知識(shí)內(nèi)容和方法的本質(zhì)認(rèn)識(shí),是對(duì)數(shù)學(xué)的規(guī)律性的理性認(rèn)識(shí)。高考通過(guò)對(duì)數(shù)學(xué)思想方法的考查,能夠最有效地檢測(cè)學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解和掌握程度,能夠最有效地反映出學(xué)生對(duì)數(shù)學(xué)各部分內(nèi)容的銜接、綜合和滲透的能力。《考試大綱》對(duì)數(shù)學(xué)考查的要求是“數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過(guò)分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)” 。而數(shù)學(xué)思想方法起著重要橋梁連接和支稱作用,“對(duì)數(shù)學(xué)思想方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識(shí)相結(jié)合,通過(guò)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想方法的掌握程度” ! 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識(shí)的基礎(chǔ)上,注重對(duì)數(shù)學(xué)思想方法的考查,注重對(duì)數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求! 數(shù)學(xué)的思想方法滲透到數(shù)學(xué)的各個(gè)角落,無(wú)處不在,有些題目還要考查多個(gè)數(shù)學(xué)思想。在高考復(fù)習(xí)時(shí),要充分認(rèn)識(shí)數(shù)學(xué)思想在提高解題能力的重要性,在復(fù)習(xí)中要有意識(shí)地滲透這些數(shù)學(xué)思想,提升數(shù)學(xué)思想。

一、函數(shù)與方程的思想

所謂函數(shù)的思想,就是用運(yùn)動(dòng)和變化的觀點(diǎn)、集合對(duì)應(yīng)的思想,去分析和研究數(shù)學(xué)問(wèn)題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù)。運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題,從而使問(wèn)題獲得解決,函數(shù)思想是對(duì)函數(shù)概念的本質(zhì)認(rèn)識(shí),用于指導(dǎo)解題就是要善于利用函數(shù)知識(shí)或函數(shù)觀點(diǎn)去觀察分析處理問(wèn)題。

所謂方程的思想就是分析數(shù)學(xué)問(wèn)題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過(guò)解方程(組),或者運(yùn)用方程的性質(zhì)去分析轉(zhuǎn)化問(wèn)題使問(wèn)題獲得解決,方程思想是對(duì)方程概念的本質(zhì)認(rèn)識(shí),用于指導(dǎo)解題就是利用方程或方程觀點(diǎn)觀察處理問(wèn)題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。

函數(shù)和方程的思想是最重要和最常用的數(shù)學(xué)思想,它貫穿于整個(gè)高中教學(xué)中,中學(xué)數(shù)學(xué)中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結(jié)為函數(shù),尤其是導(dǎo)數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學(xué)教學(xué)中注重函數(shù)與方程的思想是相當(dāng)重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點(diǎn)來(lái)考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運(yùn)算,而在解答題中,則從更深的層次,在知識(shí)的網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相綜合的角度進(jìn)行深入考查。

1、利用函數(shù)與方程的性質(zhì)解題

例1.(2008安徽卷,理,11)若函數(shù)6ec8aac122bd4f6e分別是6ec8aac122bd4f6e上的奇函數(shù)、偶函數(shù),且滿足6ec8aac122bd4f6e,則有(    )

A.6ec8aac122bd4f6e                 B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e


同步練習(xí)冊(cè)答案