由表格知:G (x)極小值 = G (0) =.G (x)極大值 = G = ln2>0. --11分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知f′(x)g(x)-f(x)g′(x)=x2(1-x),則函數(shù)
f(x)
g(x)
( 。

查看答案和解析>>

已知函數(shù),

(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若方程有唯一解,求實數(shù)的值.

【解析】第一問,   

當(dāng)0<x<2時,,當(dāng)x>2時,,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當(dāng)上均為增函數(shù)

(Ⅱ)中方程有唯一解有唯一解

設(shè)  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當(dāng)m=-24-16ln2時,方程有唯一解得到結(jié)論。

(Ⅰ)解: 

當(dāng)0<x<2時,,當(dāng)x>2時,,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當(dāng),上均為增函數(shù)  ……………6分

(Ⅱ)方程有唯一解有唯一解

設(shè)  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當(dāng)m=-24-16ln2時,方程有唯一解

 

查看答案和解析>>

已知f′(x)g(x)-f(x)g′(x)=x2(1-x),則函數(shù)( )
A.有極大值點1,極小值點0
B.有極大值點0,極小值點1
C.有極大值點1,無極小值點
D.有極小值點0,無極大值點

查看答案和解析>>

已知f′(x)g(x)-f(x)g′(x)=x2(1-x),則函數(shù)
f(x)
g(x)
( 。
A.有極大值點1,極小值點0
B.有極大值點0,極小值點1
C.有極大值點1,無極小值點
D.有極小值點0,無極大值點

查看答案和解析>>


同步練習(xí)冊答案